Displaying all 3 publications

Abstract:
Sort:
  1. Che Man R, Sulaiman N, Ishak MF, Bt Hj Idrus R, Abdul Rahman MR, Yazid MD
    PMID: 33114632 DOI: 10.3390/ijerph17217825
    Anti-atherogenic therapy is crucial in halting the progression of inflammation-induced intimal hyperplasia. The aim of this concise review was to methodically assess the recent findings of the different approaches, mainly on the recruitment of chemokines and/or cytokine and its effects in combating the intimal hyperplasia caused by various risk factors. Pubmed and Scopus databases were searched, followed by article selection based on pre-set inclusion and exclusion criteria. The combination of keywords used were monocyte chemoattractant protein-1 OR MCP-1 OR TNF-alpha OR TNF-α AND hyperplasia OR intimal hyperplasia OR neointimal hyperplasia AND in vitro. These keywords combination was incorporated in the study and had successfully identified 77 articles, with 22 articles were acquired from Pubmed, whereas 55 articles were obtained from Scopus. However, after title screening, only twelve articles meet the requirements of defined inclusion criteria. We classified the data into 4 different approaches, i.e., utilisation of natural product, genetic manipulation and protein inhibition, targeted drugs in clinical setting, and chemokine and cytokines induction. Most of the articles are working on genetic manipulation targeted on specific pathway to inhibit the pro-inflammatory factors expression. We also found that the utilisation of chemokine- and cytokine-related treatments are emerging throughout the years. However, there is no study utilising the combination of approaches that might give a better outcome in combating intimal hyperplasia. Hopefully, this concise review will provide an insight regarding the usage of different novel approaches in halting the progression of intimal hyperplasia, which serves as a key factor for the development of atherosclerosis in cardiovascular disease.
  2. Tahri S, Maarof M, Masri S, Che Man R, Masmoudi H, Fauzi MB
    Front Bioeng Biotechnol, 2023;11:1200618.
    PMID: 37425369 DOI: 10.3389/fbioe.2023.1200618
    Introduction: Plenty of biomaterials have been studied for their application in skin tissue engineering. Currently, gelatin-hydrogel is used to support three-dimensional (3D) skin in vitro models. However, mimicking the human body conditions and properties remains a challenge and gelatin-hydrogels have low mechanical properties and undergo rapid degradation rendering them not suitable for 3D in vitro cell culture. Nevertheless, changing the concentration of hydrogels could overcome this issue. Thus, we aim to investigate the potential of gelatin hydrogel with different concentrations crosslinked with genipin to promote human epidermal keratinocytes and human dermal fibroblasts culture to develop a 3D-in vitro skin model replacing animal models. Methods: Briefly, the composite gelatin hydrogels were fabricated using different concentrations as follows 3%, 5%, 8%, and 10% crosslinked with 0.1% genipin or non-crosslinked. Both physical and chemical properties were evaluated. Results and discussion: The crosslinked scaffolds showed better properties, including porosity and hydrophilicity, and genipin was found to enhance the physical properties. Furthermore, no alteration was prominent in both formulations of CL_GEL 5% and CL_GEL8% after genipin modification. The biocompatibility assays showed that all groups promoted cell attachment, cell viability, and cell migration except for the CL_GEL10% group. The CL_GEL5% and CL_GEL8% groups were selected to develop a bi-layer 3D-in vitro skin model. The immunohistochemistry (IHC) and hematoxylin and eosin staining (H&E) were performed on day 7, 14, and 21 to evaluate the reepithelization of the skin constructs. However, despite satisfactory biocompatibility properties, neither of the selected formulations, CL_GEL 5% and CL_GEL 8%, proved adequate for creating a bi-layer 3D in-vitro skin model. While this study provides valuable insights into the potential of gelatin hydrogels, further research is needed to address the challenges associated with their use in developing 3D skin models for testing and biomedical applications.
  3. Abdul Manaf SA, Mohamad Fuzi SFZ, Abdul Manas NH, Md Illias R, Low KO, Hegde G, et al.
    Biotechnol Appl Biochem, 2021 Dec;68(6):1128-1138.
    PMID: 32969042 DOI: 10.1002/bab.2034
    The traditional approach of fermentation by a free cell system has limitations of low productivity and product separation that need to be addressed for production enhancement and cost effectiveness. One of potential methods to solve the problems is cell immobilization. Microbial cell immobilization allows more efficient up-scaling by reducing the nonproductive growth phase, improving product yield and simplifying product separation. Furthermore, the emergence of nanomaterials such as carbon nanotubes, graphene, and metal-based nanomaterials with excellent functional properties provides novel supports for cell immobilization. Nanomaterials have catalytic properties that can provide specific binding site with targeted cells. However, the toxicity of nanomaterials towards cells has hampered its application as it affects the biological system of the cells, which cannot be neglected in any way. This gray area in immobilization is an important concern that needs to be addressed and understood by researchers. This review paper discusses an overview of nanomaterials used for cell immobilization with special focus on its toxicological challenges and how by understanding physicochemical properties of nanomaterials could influence the toxicity and biocompatibility of the cells.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links