Displaying all 4 publications

Abstract:
Sort:
  1. Chua HS, Soh YH, Ibrahim S, Abdullah NH, Che Mat Seri NAA, AbuBakar S, et al.
    Trop Biomed, 2024 Jun 01;41(2):220-223.
    PMID: 39154277 DOI: 10.47665/tb.41.2.014
    Vibrio vulnificus infection is associated with high morbidity and mortality in high-risk patients. Poor prognoses could lead to >50% mortality rate. The present report describes a case of V. vulnificus bacteremia in a cirrhotic patient with underlying hepatitis C. He presented with generalised abdominal pain associated with distention and could not ambulate for one week. He also complained of fever for six days and pruritus for 10 days. Tea-coloured urine was noted in continuous bag drainage. The abdomen was distended but soft, with mild tenderness palpated over the left lumbar and iliac region. Blood investigation indicated ongoing infection and inflammation. The aerobic blood culture was identified using the matrix-assisted laser desorption/ionisation-time of flight mass spectrometry and confirmed via 16S rDNA sequencing as V. vulnificus. Multilocus sequence typing of the isolated V. vulnificus revealed a novel sequence type, ST540. The patient responded well to the intravenous cefoperazone and was then discharged with a four day-course of oral ciprofloxacin, 500 mg twice daily after completing the intravenous cefoperazone for 10 days. Clinical history and physical examination are important for early antibiotic therapy initiation and appropriate surgical intervention. Furthermore, bacterial strain typing is also essential for epidemiological surveillance and potentially anticipating the pathogen's virulence traits, which are vital in controlling and preventing the spread of infection.
  2. Tan KK, Azizan NS, Yaacob CN, Che Mat Seri NAA, Samsudin NI, Teoh BT, et al.
    BMC Infect Dis, 2018 04 11;18(1):169.
    PMID: 29642856 DOI: 10.1186/s12879-018-3065-1
    BACKGROUND: A method for rapid detection of dengue virus using the reverse-transcription recombinase polymerase amplification (RT-RPA) was recently developed, evaluated and made ready for deployment. However, reliance solely on the evaluation performed by experienced researchers in a well-structured and well-equipped reference laboratory may overlook the potential intrinsic problems that may arise during deployment of the assay into new application sites, especially for users unfamiliar with the test. Appropriate assessment of this newly developed assay by users who are unfamiliar with the assay is, therefore, vital.

    METHODS: An operational utility test to elucidate the efficiency and effectiveness of the dengue RT-RPA assay was conducted among a group of researchers new to the assay. Nineteen volunteer researchers with different research experience were recruited. The participants performed the RT-RPA assay and interpreted the test results according to the protocol provided. Deviation from the protocol was identified and tabulated by trained facilitators. Post-test questionnaires were conducted to determine the user satisfaction and acceptability of the dengue RT-RPA assay.

    RESULTS: All the participants completed the test and successfully interpreted the results according to the provided instructions, regardless of their research experience. Of the 19 participants, three (15.8%) performed the assay with no deviations and 16 (84.2%) performed the assay with only 1 to 5 deviations. The number of deviations from protocol, however, was not correlated with the user laboratory experience. The accuracy of the results was also not affected by user laboratory experience. The concordance of the assay results against that of the expected was at 89.3%. The user satisfaction towards the RT-RPA protocol and interpretation of results was 90% and 100%, respectively.

    CONCLUSIONS: The dengue RT-RPA assay can be successfully performed by simply following the provided written instructions. Deviations from the written protocols did not adversely affect the outcome of the assay. These suggest that the RT-RPA assay is indeed a simple, robust and efficient laboratory method for detection of dengue virus. Furthermore, high new user acceptance of the RT-RPA assay suggests that this assay could be successfully deployed into new laboratories where RT-RPA was not previously performed.

  3. Tan KK, Zulkifle NI, Abd-Jamil J, Sulaiman S, Yaacob CN, Azizan NS, et al.
    Infect Genet Evol, 2017 Oct;54:271-275.
    PMID: 28698156 DOI: 10.1016/j.meegid.2017.07.008
    Dengue is hyperendemic in most of Southeast Asia. In this region, all four dengue virus serotypes are persistently present. Major dengue outbreak cycle occurs in a cyclical pattern involving the different dengue virus serotypes. In Malaysia, since the 1980s, the major outbreak cycles have involved dengue virus type 3 (DENV3), dengue virus type 1 (DENV1) and dengue virus type 2 (DENV2), occurring in that order (DENV3/DENV1/DENV2). Only limited information on the DENV3 cycles, however, have been described. In the current study, we examined the major outbreak cycle involving DENV3 using data from 1985 to 2016. We examined the genetic diversity of DENV3 isolates obtained during the period when DENV3 was the dominant serotype and during the inter-dominant transmission period. Results obtained suggest that the typical DENV3/DENV1/DENV2 cyclical outbreak cycle in Malaysia has recently been disrupted. The last recorded major outbreak cycle involving DENV3 occurred in 2002, and the expected major outbreak cycle involving DENV3 in 2006-2012 did not materialize. DENV genome analyses revealed that DENV3 genotype II (DENV3/II) was the predominant DENV3 genotype (67%-100%) recovered between 1987 and 2002. DENV3 genotype I (DENV3/I) emerged in 2002 followed by the introduction of DENV3 genotype III (DENV3/III) in 2008. These newly emerged DENV3 genotypes replaced DENV3/II, but there was no major upsurge of DENV3 cases that accompanied the emergence of these viruses. DENV3 remained in the background of DENV1 and DENV2 until now. Virus genome sequence analysis suggested that intrinsic differences within the different dengue virus genotypes could have influenced the transmission efficiency of DENV3. Further studies and continuous monitoring of the virus are needed for better understanding of the DENV transmission dynamics in hyperendemic regions.
  4. Johari J, Hontz RD, Pike BL, Husain T, Chong CK, Rusli N, et al.
    BMJ Open, 2021 08 26;11(8):e050901.
    PMID: 34446498 DOI: 10.1136/bmjopen-2021-050901
    INTRODUCTION: Middle East respiratory syndrome (MERS) is a viral respiratory infection caused by the MERS-CoV. MERS was first reported in the Kingdom of Saudi Arabia in 2012. Every year, the Hajj pilgrimage to Mecca attracts more than two million pilgrims from 184 countries, making it one of the largest annual religious mass gatherings (MGs) worldwide. MGs in confined areas with a high number of pilgrims' movements worldwide continues to elicit significant global public health concerns. MERCURIAL was designed by adopting a seroconversion surveillance approach to provide multiyear evidence of MG-associated MERS-CoV seroconversion among the Malaysian Hajj pilgrims.

    METHODS AND ANALYSIS: MERCURIAL is an ongoing multiyear prospective cohort study. Every year, for the next 5 years, a cohort of 1000 Hajj pilgrims was enrolled beginning in the 2016 Hajj pilgrimage season. Pre-Hajj and post-Hajj serum samples were obtained and serologically analysed for evidence of MERS-CoV seroconversion. Sociodemographic data, underlying medical conditions, symptoms experienced during Hajj pilgrimage, and exposure to camel and untreated camel products were recorded using structured pre-Hajj and post-Hajj questionnaires. The possible risk factors associated with the seroconversion data were analysed using univariate and multivariate logistic regression. The primary outcome of this study is to better enhance our understanding of the potential threat of MERS-CoV spreading through MG beyond the Middle East.

    ETHICS AND DISSEMINATION: This study has obtained ethical approval from the Medical Research and Ethics Committee (MREC), Ministry of Health Malaysia. Results from the study will be submitted for publication in peer-reviewed journals and presented in conferences and scientific meetings.

    TRIAL REGISTRATION NUMBER: NMRR-15-1640-25391.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links