This paper presents a 35.0 × 35.0 × 2.7 mm3 compact, low-profile, and lightweight wearable antenna for on-body wireless power transfer. The proposed antenna can be easily printed on a piece of flexible tattoo paper and transformed onto a PDMS substrate, making the entire antenna structure conform to the human body for achieving a better user experience. Here, a layer of frequency selective surface (FSS) is inserted in between the antenna and human tissue, which has successfully reduced the loading effects of the tissue, with 13.8 dB improvement on the antenna gain. Also, the operating frequency of the rectenna is not affected much by deformation. To maximize the RF-DC conversion efficiency, a matching loop, a matching stub, and two coupled lines are integrated with the antenna for tuning the rectenna so that a wide bandwidth (~ 24%) can be achieved without the use of any external matching networks. Measurement results show that the proposed rectenna can achieve a maximum conversion efficiency of 59.0% with an input power of 5.75 μW/cm2 and can even exceed 40% for a low input power of 1.0 μW/cm2 with a 20 kΩ resistive load, while many other reported rectennas can only achieve a high PCE at a high power density level, which is not always practical for a wearable antenna.
For the first time, a flexible and deformable liquid dielectric resonator antenna (LDRA) is proposed for air pressure sensing. The proposed LDRA can be made very compact as it has employed liquidized organic dielectric with high dielectric constant (~ 33) with low loss tangent (~ 0.05). Here, a soft elastomer container has been fabricated using soft-lithography method for holding the liquid, and an air cavity is tactfully embedded into the central part of a cylindrical DRA to form an annular structure that can be used for sensing air pressure. It will be shown that the inclusion of the air cavity is essential for making the antenna structure sensitive to pressure changes. Simulations and experiments have been conducted to verify the functionalities of the proposed organic LDRA as microwave radiator and as air pressure sensor. It has been proven to have higher antenna gain than the water LDRA in the frequency range of 1.8-2.8 GHz, while achieving a good air pressure sensitivity of 270 MHz/bar.
Throat sensing has received increasing demands in recent years, especially for oropharyngeal treatment applications. The conventional videofluoroscopy (VFS) approach is limited by either exposing the patient to radiation or incurring expensive costs on sophisticated equipment as well as well-trained speech-language pathologists. Here, we propose a smart and non-invasive throat sensor that can be fabricated using an ionic polymer-metal composite (IPMC) material. Through the cation's movement inside the IPMC material, the sensor can detect muscle movement at the throat using a self-generated signal. We have further improved the output responses of the sensor by coating it with a corrosive-resistant gold material. A support vector machine algorithm is used to train the sensor in recognizing the pattern of the throat movements, with a high accuracy of 95%. Our proposed throat sensor has revealed its potential to be used as a promising solution for smart healthcare devices, which can benefit many practical applications such as human-machine interactions, sports training, and rehabilitation.
This paper reports a wirelessly powered ionic polymer-metal composite (IPMC) soft actuator operated by external radio frequency (RF) magnetic fields for targeted drug delivery. A 183 μm thick IPMC cantilever valve was fitted with an embedded LC resonant circuit to wirelessly control the actuator when the field frequency is tuned to its resonant frequency of approximately 25 MHz. Experimental characterization of the fabricated actuator showed a cumulative cantilever deflection of 160 μm for three repeated RF ON-OFF cycles at 0.6 W input power. The device was loaded with a dye solution and immersed in DI water to demonstrate wireless drug release. The qualitative result shows the successful release of the dye solution from the device reservoir. The release rate can be controlled by tuning the RF input power. We achieved a maximum average release rate of ∼0.1 μl s-1. We further conducted an in vitro study with human tumor cells (HeLa) to demonstrate the proof of concept of the developed device. The experiments show promising results towards the intended drug delivery application.
The integration of flexible sensors into human-machine interfaces (HMIs) is in increasing demand for intuitive and effective manipulation. Traditional glove-based HMIs, constrained by nonconformal rigid structures or the need for bulky batteries, face limitations in continuous operation. Addressing this, we introduce yarn-based bend sensors in our smart glove, which are wirelessly powered and harvest energy from a fully textile 5.8 GHz WiFi-band antenna receiver. These sensors exhibit a gauge factor (GF) of 5.60 for strains ranging from 0 to 10%. They show a consistent performance regardless of the straining frequency when being stretched and released at frequencies between 0.1 and 0.7 Hz. This reliability ensures that the sensor output is solely dependent on the yarn's elongation. Accurately detecting finger-bending movements from 0° to 90° in a virtual environment, the sensors enable enhanced degrees of freedom for human finger interaction. When integrated with advanced machine-learning techniques, the system achieves a classification accuracy of 98.75% for object recognition, demonstrating its potential for precise and accurate HMI. Unlike conventional near-field energy transfer methods that rely on magnetic flux and are limited by power loss over distance, our fully textile design effectively harvests microwave energy, showing no voltage deterioration up to 1 m away. This minimalist microwave-powered smart glove represents a significant advancement, offering a viable and practical solution for developing intuitive and reliable HMIs.