An investigation on biologically active secondary metabolites from the stem bark of Mesua beccariana was carried out. A new cyclodione, mesuadione, along with several known constituents which are beccamarin, 2,5-dihydroxy-1,3,4-trimethoxy anthraquinone, 4-methoxy-1,3,5-trihydroxyanthraquinone, betulinic acid and stigmasterol were obtained from this ongoing research. Structures of these compounds were elucidated by extensive spectroscopic methods, including 1D and 2D-NMR, GC-MS, IR and UV techniques. Preliminary tests of the in vitro cytotoxic activities of all the isolated metabolites against a panel of human cancer cell lines Raji (lymphoma), SNU-1 (gastric carcinoma), K562 (erythroleukemia cells), LS-174T (colorectal adenocarcinoma), HeLa (cervical cells), SK-MEL-28 (malignant melanoma cells), NCI-H23 (lung adenocarcinoma), IMR-32 (neuroblastoma) and Hep-G2 (hepatocellular liver carcinoma) were carried out using an MTT assay. Mesuadione, beccamarin, betulinic acid and stigmasterol displayed strong inhibition of Raji cell proliferation, while the proliferation rate of SK-MEL-28 and HeLa were strongly inhibited by stigmasterol and beccamarin, indicating these secondary metabolites could be anti-cancer lead compounds in drug discovery.
Plant natural compounds have great potential as alternative medicines for preventing and treating diseases. Melicope lunu-ankenda is one Melicope species (family Rutaceae), which is widely used in traditional medicine, consumed as a salad and a food seasoning. Consumption of different parts of this plant has been reported to exert different biological activities such as antioxidant and anti-inflammatory qualities, resulting in a protective effect against several health disorders including neurodegenerative diseases. Various secondary metabolites such as phenolic acid derivatives, flavonoids, coumarins and alkaloids, isolated from the M. lunu-ankenda plant, were demonstrated to have neuroprotective activities and also exert many other beneficial biological effects. A number of studies have revealed different neuroprotective mechanisms for these secondary metabolites. This review summarizes the most significant and recent studies for neuroprotective activity of M. lunu-ankenda major secondary metabolites in neurodegenerative diseases.