Displaying all 6 publications

Abstract:
Sort:
  1. Sankaran R, Show PL, Cheng YS, Tao Y, Ao X, Nguyen TDP, et al.
    Mol Biotechnol, 2018 Oct;60(10):749-761.
    PMID: 30116991 DOI: 10.1007/s12033-018-0111-6
    Microalgae are the most promising sources of protein, which have high potential due to their high-value protein content. Conventional methods of protein harnessing required multiple steps, and they are generally complex, time consuming, and expensive. Currently, the study of integration methods for microalgae cell disruption and protein recovery process as a single-step process is attracting considerable interest. This study aims to investigate the novel approach of integration method of electrolysis and liquid biphasic flotation for protein extraction from wet biomass of Chlorella sorokiniana CY-1 and obtaining the optimal operating conditions for the protein extraction. The optimized conditions were found at 60% (v/v) of 1-propanol as top phase, 250 g/L of dipotassium hydrogen phosphate as bottom phase, crude microalgae loading of 0.1 g, air flowrate of 150 cc/min, flotation time of 10 min, voltage of 20 V and electrode's tip touching the top phase of LBEF. The protein recovery and separation efficiency after optimization were 23.4106 ± 1.2514% and 173.0870 ± 4.4752%, respectively. Comparison for LBEF with and without the aid of electric supply was also conducted, and it was found that with the aid of electrolysis, the protein recovery and separation efficiency increased compared to the LBEF without electrolysis. This novel approach minimizes the steps for overall protein recovery from microalgae, time consumption, and cost of operation, which is beneficial in bioprocessing industry.
  2. Gundupalli MP, Chuetor S, Cheenkachorn K, Rattanaporn K, Show PL, Cheng YS, et al.
    Bioengineering (Basel), 2021 Nov 02;8(11).
    PMID: 34821737 DOI: 10.3390/bioengineering8110171
    Wax is an organic compound found on the surface of lignocellulose biomass to protect plants from physical and biological stresses in nature. With its small mass fraction in biomass, wax has been neglected from inclusion in the design of the biorefinery process. This study investigated the interfering effect of wax in three types of lignocellulosic biomass, including rice straw (RS), Napier grass (NG), and sugarcane bagasse (SB). In this study, although small fractions of wax were extracted from RS, NG, and SB at 0.57%, 0.61%, and 1.69%, respectively, dewaxing causes changes in the plant compositions and their functional groups and promotes dissociations of lignocellulose fibrils. Additionally, dewaxing of biomass samples increased reducing sugar by 1.17-, 1.04-, and 1.35-fold in RS, NG, and SB, respectively. The ethanol yield increased by 1.11-, 1.05-, and 1.23-fold after wax removal from RS, NG, and SB, respectively. The chemical composition profiles of the waxes obtained from RS, NG, and SB showed FAME, alcohol, and alkane as the major groups. According to the conversion rate of the dewaxing process and ethanol fermentation, the wax outputs of RS, NG, and SB are 5.64, 17.00, and 6.00 kg/ton, respectively. The current gasoline price is around USD 0.903 per liter, making ethanol more expensive than gasoline. Therefore, in order to reduce the cost of ethanol in the biorefinery industry, other valuable products (such as wax) should be considered for commercialization. The cost of natural wax ranges from USD 2 to 22 per kilogram, depending on the source of the extracted wax. The wax yields obtained from RS, SB, and NG have the potential to increase profits in the biorefining process and could provide an opportunity for application in a wider range of downstream industries than just biofuels.
  3. Satya ADM, Cheah WY, Yazdi SK, Cheng YS, Khoo KS, Vo DN, et al.
    Environ Res, 2023 Feb 01;218:114948.
    PMID: 36455634 DOI: 10.1016/j.envres.2022.114948
    Water usage increased alongside its competitiveness due to its finite amount. Yet, many industries still rely on this finite resource thus recalling the need to recirculate their water for production. Circular bioeconomy is presently the new approach emphasizing on the 'end-of-life' concept with reusing, recycling, and recovering materials. Microalgae are the ideal source contributing to circular bioeconomy as it exhibits fast growth and adaptability supported by biological rigidity which in turn consumes nutrients, making it an ideal and capable bioremediating agent, therefore allowing water re-use as well as its biomass potential in biorefineries. Nevertheless, there are challenges that still need to be addressed with consideration of recent advances in cultivating microalgae in wastewater. This review aimed to investigate the potential of microalgae biomass cultivated in wastewater. More importantly, how it'll play a role in the circular bioeconomy. This includes an in-depth look at the production of goods coming from wastes tattered by emerging pollutants. These emerging pollutants include microplastics, antibiotics, ever-increasingly sewage water, and heavy metals which have not been comprehensively compared and explored. Therefore, this review is aiming to bring new insights to researchers and industrial stakeholders with interest in green alternatives to eventually contribute towards environmental sustainability.
  4. Mahdi HI, Ramlee NN, da Silva Duarte JL, Cheng YS, Selvasembian R, Amir F, et al.
    Chemosphere, 2023 Apr;319:138003.
    PMID: 36731678 DOI: 10.1016/j.chemosphere.2023.138003
    Biodiesel is an alternative to fossil-derived diesel with similar properties and several environmental benefits. Biodiesel production using conventional catalysts such as homogeneous, heterogeneous, or enzymatic catalysts faces a problem regarding catalysts deactivation after repeated reaction cycles. Heterogeneous nanocatalysts and nanobiocatalysts (enzymes) have shown better advantages due to higher activity, recyclability, larger surface area, and improved active sites. Despite a large number of studies on this subject, there are still challenges regarding its stability, recyclability, and scale-up processes for biodiesel production. Therefore, the purpose of this study is to review current modifications and role of nanocatalysts and nanobiocatalysts and also to observe effect of various parameters on biodiesel production. Nanocatalysts and nanobiocatalysts demonstrate long-term stability due to strong Brønsted-Lewis acidity, larger active spots and better accessibility leading to enhancethe biodiesel production. Incorporation of metal supporting positively contributes to shorten the reaction time and enhance the longer reusability. Furthermore, proper operating parameters play a vital role to optimize the biodiesel productivity in the commercial scale process due to higher conversion, yield and selectivity with the lower process cost. This article also analyses the relationship between different types of feedstocks towards the quality and quantity of biodiesel production. Crude palm oil is convinced as the most prospective and promising feedstock due to massive production, low cost, and easily available. It also evaluates key factors and technologies for biodiesel production in Indonesia, Malaysia, Brazil, and the USA as the biggest biodiesel production supply.
  5. Kee PE, Cheng YS, Chang JS, Yim HS, Tan JCY, Lam SS, et al.
    Environ Res, 2023 Mar 15;221:115284.
    PMID: 36640934 DOI: 10.1016/j.envres.2023.115284
    With rapid growing world population and increasing demand for natural resources, the production of sufficient food, feed for protein and fat sources and sustainable energy presents a food insecurity challenge globally. Insect biorefinery is a concept of using insect as a tool to convert biomass waste into energy and other beneficial products with concomitant remediation of the organic components. The exploitation of insects and its bioproducts have becoming more popular in recent years. This review article presents a summary of the current trend of insect-based industry and the potential organic wastes for insect bioconversion and biorefinery. Numerous biotechnological products obtained from insect biorefinery such as biofertilizer, animal feeds, edible foods, biopolymer, bioenzymes and biodiesel are discussed in the subsequent sections. Insect biorefinery serves as a promising sustainable approach for waste management while producing valuable bioproducts feasible to achieve circular bioeconomy.
  6. Cannarella R, Shah R, Hamoda TAA, Boitrelle F, Saleh R, Gul M, et al.
    World J Mens Health, 2024 Jan;42(1):92-132.
    PMID: 37382284 DOI: 10.5534/wjmh.230034
    PURPOSE: The purpose of this meta-analysis is to study the impact of varicocele repair in the largest cohort of infertile males with clinical varicocele by including all available studies, with no language restrictions, comparing intra-person conventional semen parameters before and after the repair of varicoceles.

    MATERIALS AND METHODS: The meta-analysis was performed according to PRISMA-P and MOOSE guidelines. A systematic search was performed in Scopus, PubMed, Cochrane, and Embase databases. Eligible studies were selected according to the PICOS model (Population: infertile male patients with clinical varicocele; Intervention: varicocele repair; Comparison: intra-person before-after varicocele repair; Outcome: conventional semen parameters; Study type: randomized controlled trials [RCTs], observational and case-control studies).

    RESULTS: Out of 1,632 screened abstracts, 351 articles (23 RCTs, 292 observational, and 36 case-control studies) were included in the quantitative analysis. The before-and-after analysis showed significant improvements in all semen parameters after varicocele repair (except sperm vitality); semen volume: standardized mean difference (SMD) 0.203, 95% CI: 0.129-0.278; p<0.001; I²=83.62%, Egger's p=0.3329; sperm concentration: SMD 1.590, 95% CI: 1.474-1.706; p<0.001; I²=97.86%, Egger's p<0.0001; total sperm count: SMD 1.824, 95% CI: 1.526-2.121; p<0.001; I²=97.88%, Egger's p=0.0063; total motile sperm count: SMD 1.643, 95% CI: 1.318-1.968; p<0.001; I²=98.65%, Egger's p=0.0003; progressive sperm motility: SMD 1.845, 95% CI: 1.537%-2.153%; p<0.001; I²=98.97%, Egger's p<0.0001; total sperm motility: SMD 1.613, 95% CI 1.467%-1.759%; p<0.001; l2=97.98%, Egger's p<0.001; sperm morphology: SMD 1.066, 95% CI 0.992%-1.211%; p<0.001; I²=97.87%, Egger's p=0.1864.

    CONCLUSIONS: The current meta-analysis is the largest to date using paired analysis on varicocele patients. In the current meta-analysis, almost all conventional semen parameters improved significantly following varicocele repair in infertile patients with clinical varicocele.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links