In Malaysia presently, the main cause of human malaria is by the zoonotic monkey parasite Plasmodium knowlesi. A previous study has suggested that the P. knowlesi merozoite surface protein 1 (Pkmsp-1) block IV to be a suitable multiplicity of infection (MOI) genotyping marker for knowlesimalaria. This study therefore aimed to investigate the usefulness of Pkmsp-1 block IV in assessing the MOI of P. knowlesi in clinical isolates from Malaysia. Two allele-specific PCR primer pairs targeting the two allelic families of block IV (T1 and T2) were designed, and used to genotype P. knowlesi in 200 blood samples (100 from Peninsular Malaysia and 100 from Malaysian Borneo). Results showed that the mean MOI in Malaysian Borneo was slightly higher as compared to Peninsular Malaysia (1.58 and 1.40, respectively). Almost half of the total blood samples from Malaysian Borneo (52%) had polyclonal infections (i.e., more than one allele of any family type) as compared to Peninsular Malaysia (33%) samples. The T1 allelic family was more prevalent in Peninsular Malaysia (n=75) than in Malaysian Borneo (n=60). The T2 allelic family, however, was more prevalent in the Malaysian Borneo (n=87 vs n=53 respectively). This study shows that the single locus Pkmsp-1 block IV can serve as a simple alternative genetic marker for estimating knowlesi malaria MOI in a population. Future MOI studies should focus on macaque populations as macaques are the natural host of P. knowlesi.
Circumsporozoite protein (CSP) central repeat region is one of the main target regions of the RTS,S/AS01 vaccine for falciparum infection as it consists of immunodominant B cell epitopes. However, there is a lack of study for P. knowlesi CSP central repeat region. This study aims to characterise the CSP repeat motifs of P. knowlesi isolates in Peninsular Malaysia. CSP repeat motifs of 64 P. knowlesi isolates were identified using Rapid Automatic Detection and Alignment of Repeats (RADAR). Antigenicity of the repeat motifs and linear B cell epitopes were predicted using VaxiJen 2.0, BepiPred-2.0 and BCPred, respectively. A total of 35 dominant repeat motifs were identified. The repeat motif "AGQPQAQGDGANAGQPQAQGDGAN" has the highest repeat frequency (n=15) and antigenicity index of 1.7986. All the repeat regions were predicted as B cell epitopes. In silico approaches revealed that all repeat motifs were antigenic and consisted of B cell epitopes which could be designed as knowlesi malaria vaccine.
Plasmodium knowlesi, primarily a zoonotic malaria species is the most common malaria pathogen in the Southeast Asia especially in Malaysian Borneo, Malaysia. Due to morphological resemblance of P. knowlesi to other human Plasmodium, the sensitivity for microscopic detection of P. knowlesi, which is the gold standard, is compromised. Thus, efforts have been made in finding alternatives for the disease diagnosis. This study described the potential use of anti-PkTRAMP polyclonal antibodies in sandwich ELISA for P. knowlesi detection. Anti-PkTRAMP polyclonal antibodies raised from mice and rabbit were first evaluated for their binding capability towards native proteins in P. knowlesi lysates using Western blot. These mice and rabbit polyclonal antibodies were then used in the sandwich ELISA as capture and detection antibodies, respectively. P. knowlesi A1H1 culture was utilised to determine the limit of detection (LOD) of this assay. Its clinical performance was determined by testing with archived human malaria and uninfected samples. Western blot analysis affirmed the polyclonal antibodies reactivity to P. knowlesi. The LOD obtained from three replicated assays was at 0.015% parasitaemia. The assay has 76% sensitivity and 75% specificity for P. knowlesi. Its positive and negative predictive values were 76% and 75%, respectively. No cross reactivity with P. falciparum and healthy samples was observed, except for P. vivax where 10 out of 12 samples were detected. In conclusion, anti-PkTRAMP polyclonal antibodies can be useful in detecting P. knowlesi. Regardless, the full potential of anti-PkTRAMP antibodies for diagnostic purposes need to be explored further.
The Plasmodium secreted protein with an altered thrombospondin repeat (SPATR) has been known to play an important role in the malaria parasite's invasion into host erythrocytes. This protein is immunogenic and has been considered as one of the potential vaccine candidates against malaria parasite infection. Thus far, only a handful immunological studies have been carried out on P. knowlesi SPATR (PkSPATR), and none of these studies investigated the immunoprotective properties of the protein. In the present study, the ability of anti-PkSPATR antibodies to inhibit invasion of human erythrocytes was assessed in an in vitro merozoite invasion inhibition assay. The antibodies were harvested from the serum of a rabbit which was immunised with recombinat PkSPATR. Results from the merozoite invasion inhibition assay revealed significant antibody invasion inhibitory activity in a concentration dependent manner (concentration range: 0.375 - 3.00 mg/ml) with inhibition rate ranging from 20% to 32%. Future studies, such as anti-PkSPATR antibodies inhibitory effect on sporozoite invasion of human liver cells, need to be carried out to assess the potential of PkSPATR as a knowlesi malaria vaccine candidate.
Malaria causes high global mortality and morbidity annually. Plasmodium knowlesi has been recognised as the fifth human Plasmodium sp. and its infection is widely distributed in Southeast Asia. Merozoite surface protein-119 (MSP-119) appears as a potential candidate for malaria blood stage vaccine as it could induce protective immunity. In this study, codon optimized P. knowlesi MSP-119 (pkMSP-119) was expressed and purified in yeast Pichia pastoris expression system. The purified recombinant protein was further evaluated using Western blot assay using knowlesi malaria, non-knowlesi human malaria, non-malarial parasitic infections and healthy serum samples (n = 50). The sensitivity of purified pkMSP-119 towards detection of knowlesi infection was as 28.6% (2/7). pkMSP-119 did not react with all non-malarial parasitic infections and healthy donor sera, yet reacted with some non-knowlesi human malaria sera, therefore lead to a specificity of 86.0% (37/43).
The need for conservation scientists to produce research of greater relevance to practitioners is now increasingly recognized. This study provides an example of scientists working alongside practitioners and policy makers to address a question of immediate relevance to elephant conservation in Malaysia and using the results to inform wildlife management policy and practice including the National Elephant Conservation Action Plan for Peninsular Malaysia. Since ensuring effective conservation of elephants in the Endau Rompin Landscape (ERL) in Peninsular Malaysia is difficult without data on population parameters we (1) conducted a survey to assess the size of the elephant population, (2) used that information to assess the viability of the population under different management scenarios including translocation of elephants out of the ERL (a technique long used in Malaysia to mitigate human-elephant conflict (HEC)), and (3) assessed a number of options for managing the elephant population and HEC in the future. Our dung-count based survey in the ERL produced an estimate of 135 (95% CI [80-225]) elephants in the 2,500 km2 area. The population is thus of national significance, containing possibly the second largest elephant population in Peninsular Malaysia, and with effective management elephant numbers could probably double. We used the data from our survey plus other sources to conduct a population viability analysis to assess relative extinction risk under different management scenarios. Our results demonstrate that the population cannot sustain even very low levels of removal for translocation or anything other than occasional poaching. We describe, therefore, an alternative approach, informed by this analysis, which focuses on in situ management and non-translocation-based methods for preventing or mitigating HEC. The recommended approach includes an increase in law enforcement to protect the elephants and their habitat, maintenance of habitat connectivity between the ERL and other elephant habitat, and a new focus on adaptive management.
Normocyte binding protein Xa (NBPXa) has been implied to play a significant role in parasite invasion of human erythrocytes. Previous phylogenetic studies have reported the existence of three types of NBPXa for Plasmodium knowlesi (PkNBPXa). PkNBPXa region II (PkNBPXaII) of type 1, type 2 and type 3 were expressed on mammalian cell surface and interacted with human and macaque (Macaca fascicularis) erythrocytes. The binding activities of PkNBPXaII towards human and macaque erythrocytes were evaluated using erythrocyte-binding assay (EBA). Three parameters were evaluated to achieve the optimal protein expression of PkNBPXaII and erythrocyte binding activity in EBA: types of mammalian cells, post transfection time and erythrocyte incubation time. COS-7, HEK-293, and CHO-K1 cells showed successful expression of PkNBPXaII, despite the protein expression is weak compared to the positive control. COS-7 was used in EBA. All three types of PkNBPXaII showed rosette formation with macaque erythrocytes but not with human erythrocytes. Future studies to enhance the PkNBPXaII expression on surface of mammalian cells is indeed needed in order to elucidate the specific role of PkNBPXaII in erythrocytes invasion.