MATERIALS AND METHOD: Fifty human permanent single rooted and single canaled freshly extracted teeth were decoronated and sectioned apically to prepare the middle third of root sections of 5 mm length. The canals were prepared in a step-back manner. OrthoMTA was packed throughout the prepared canals. These root sections were incubated for one week and subsequently randomly allocated to five groups (n = 10) according to the OrthoMTA removal method: No treatment (NT); 5% glycolic acid + ultrasonics (5% GA+U); 10% glycolic acid + ultrasonics (10% GA+U); 10% citric acid + ultrasonics (10% CA+U); Distilled water + ultrasonics (DW+U). A 1 mm deep well was created within the coronal end of the set OrthoMTA. Wells were filled with each respective test solution and left for 5 min. Thereafter, further removal of OrthoMTA used a specific ultrasonic tip. Finally, the canals were flushed using 1 mL of the respective test solutions and activated with a Controlled Memory ultrasonic tip for two cycles of 20 s each followed by flushing with 1 mL of distilled water and paper point drying of the canals. Then, specimens were longitudinally split into two halves and examined under a scanning electron microscope (1000×) to assess the residual OrthoMTA and surface topography of root canal dentin. The Vickers surface microhardness of treated radicular dentin was measured using the HMV-2 microhardness tester.
RESULT: Data were analysed using one-way ANOVA followed by Tukey's post hoc test. Significant differences for residual OrthoMTA were observed between (10% GA+U) with (5% GA+U), (10% CA+U), (DW+U) and (NT) (p value < 0.01). In the context of microhardness, (5% GA+U) and (10% GA+U) showed statistically significant difference compared to (NT), (10% CA+U) and (DW+U) (p value < 0.01).
CONCLUSION: 10% GA+U was superior to other tested groups in removing OrthoMTA, but it substantially reduced dentin microhardness.
AIM: The study aimed to evaluate the effect of placement of compactable glass fibers in reinforcing the endodontically treated teeth in a novel conservative manner.
SETTINGS AND DESIGN: Research laboratory, in vitro study.
MATERIALS AND METHODS: Seventy-five extracted maxillary premolars were procured. Fifteen teeth were left untreated (Group A) and the remaining teeth were endodontically treated followed by standardized mesio-occluso-distal preparation and randomly assigned to experimental groups (n = 15) as follows: (B) no restoration, (C) restoration with composite, (D) EverStick® POST followed by composite, and (E) vertical glass fibers within 3 mm of the coronal root canal space and buccopalatal flaring of the coronal fibers followed by composite. After conditioning and thermocycling, specimens were loaded under a universal testing machine to evaluate fracture resistance and fracture pattern of specimens.
STATISTICAL ANALYSIS USED: Obtained scores were statistically analyzed using one-way analysis of variance test for stress analysis, post hoc Tukey's test for intergroup comparison, and Chi-square test for analysis of favorable and unfavorable fracture.
RESULTS: The fracture resistance was highest to lowest as follows: Group A > E > C > D > B (P < 0.001).
CONCLUSION: EverStick®POST used in conservative manner improved fracture strength of teeth significantly.
Materials and Methods: A total of 40 extracted human maxillary anterior teeth were selected, disinfected, and decoronated to obtain a standardized length of 10 mm. The teeth were prepared with Protaper universal rotary files until size F4 using 2.5% NaOCl as an irrigant during instrumentation. The teeth were then randomly divided into four groups of 10 samples each based on the irrigating solutions used during final wash sequence as follows: Group A - (2.5% NaOCl and 2% CHX), Group B - (2.5% NaOCl followed by 70% Isopropyl Alcohol and 2% CHX), Group C - (2.5% NaOCl followed by 6.25% sodium metabisulfite and 2% CHX), and Group D - (2.5% NaOCl followed by 3.86% sodium Thiosulfate and 2% CHX). The roots were sectioned longitudinally and the canal surface was evaluated under dental operating microscope (×16) for the presence of orange-brown precipitate. The results were tabulated as per scoring criteria and statistically analyzed.
Statistical Analysis Used: One-way ANOVA test and post hoc Tukey's test.
Results: The lowest mean score was observed in Group C, followed by Group D and Group B, respectively. In comparison, there was a statistically significant (P < 0.001) difference in results between Group C and the other experimental groups. However, there was no statistically significant difference between Group B and Group D.
Conclusion: Sodium metabisulfite was found to be very effective in preventing the formation of orange-brown precipitate.