The importance of zeolite surface area and pore volume in adsorption processes has been much reported in literature. In addition to that, structural framework and pore network system may also influence the adsorption capacity and selectivity of methane on zeolite. This paper discusses the characteristics of methane adsorption based on several physical properties of the adsorbents such as surface area, pore volume, pore network system and its interaction with adsorbate. The study, using FTIR spectroscopy showed that the adsorbed methane at room temperature was detected in the FTIR region between 3200 cm–1 – 1200 cm–1. Based on the physical properties of the adsorbents and the FTIR spectra of adsorbed methane, the surface area was not the only factor that determined methane adsorption; in fact the type of pore network system of the adsorbent also affected the interaction, thus affecting the adsorption of methane in zeolite.
Ordered microporous NaY zeolite and mesoporous copper oxide are high performance material as catalysts and adsorbents. The copper oxide-NaY zeolite modification in combination of their physicochemical properties could provide excellent opportunities for the creation of new gas adsorbents. In this study, modified NaY zeolite properties and methane adsorptive characteristics were investigated by dispersing copper oxide onto the NaY zeolite structure using the thermal dispersion method. The structures of the copper oxide modified zeolites were characterized by powder X-ray diffraction and Micromeritics ASAP 2000, while the methane adsorption characteristics were analyzed using a thermogravimetric analyzer. The results revealed that types of copper oxide, copper oxide loading concentration, calcination temperature and calcination time greatly affected the modified zeolite structure and gas methane adsorption characteristics.