The nucleotide sequences of the second internal transcribed spacer of rDNA were determined for adult worms of Necator americanus originating from Togo (Africa) and Sarawak (Malaysia). The length of the sequences of specimens from Togo (325 bp) were shorter than those from Sarawak (327 bp). There were six fixed genetic differences in the aligned sequences of N. americanus from Sarawak and Togo, excluding one or two polymorphic sites within the sequence of N. americanus from each geographical region. These findings suggest that there is either population variation in the sequence of N. americanus, or that N. americanus from the two countries may represent genetically distinct but morphologically similar (i.e. cryptic) species, however, comparison of the sequence differences among other hookworm species supports the latter conclusion.
The ascaridoid nematode of cats from Kuala Lumpur, Malaysia, previously identified morphologically as Toxocara canis, was characterized using a molecular approach. The nuclear ribosomal DNA (rDNA) region spanning the first internal transcribed spacer (ITS-1), the 5.8S gene and the second internal transcribed spacer (ITS-2) was amplified and sequenced. The sequences for the parasite from Malaysian cats were compared with those for T. canis and T. cati. The sequence data showed that this taxon was genetically more similar to T. cati than to T. canis in the ITS-1, 5.8S and ITS-2. Differences in the ITS-1 and ITS-2 sequences between the taxa (9.4-26.1%) were markedly higher than variation between samples within T. canis and T. cati (0-2.9%). The sequence data demonstrate that the parasite from Malaysian cats is neither T. canis nor T. cati and indicate that it is a distinct species. Based on these data, PCR-linked restriction fragment length polymorphism (RFLP) and single-strand conformation polymorphism (SSCP) methods were employed for the unequivocal differentiation of the Toxocara variant from T. canis and T. cati. These methods should provide valuable tools for studying the life-cycle, transmission pattern(s) and zoonotic potential of this parasite.
Schistosomiasis is a neglected tropical disease that affects more than 200 million people worldwide. The main disease-causing agents, Schistosoma japonicum, S. mansoni and S. haematobium, are blood flukes that have complex life cycles involving a snail intermediate host. In Asia, S. japonicum causes hepatointestinal disease (schistosomiasis japonica) and is challenging to control due to a broad distribution of its snail hosts and range of animal reservoir hosts. In China, extensive efforts have been underway to control this parasite, but genetic variability in S. japonicum populations could represent an obstacle to eliminating schistosomiasis japonica. Although a draft genome sequence is available for S. japonicum, there has been no previous study of molecular variation in this parasite on a genome-wide scale. In this study, we conducted the first deep genomic exploration of seven S. japonicum populations from mainland China, constructed phylogenies using mitochondrial and nuclear genomic data sets, and established considerable variation between some of the populations in genes inferred to be linked to key cellular processes and/or pathogen-host interactions. Based on the findings from this study, we propose that verifying intraspecific conservation in vaccine or drug target candidates is an important first step toward developing effective vaccines and chemotherapies against schistosomiasis.