The Belt and Road Initiative (BRI) is one of the largest infrastructure projects in the world, accounting for more than 30% of global GDP and 60% of world population. The economic growth of BRI member countries can be improved significantly, attributable to the successfulness of the infrastructure projects. The increased economic growth indirectly leads to higher energy consumption and environmental damage. In response to this, the BRI established a new concept and version of the project, namely green BRI. Thus, this study aims to examine if green finance plays a significant role in mitigating environmental degradation in the BRI region. Utilising a Generalised Method of Moments approach, we find green finance is negatively and significantly correlated with environmental degradation, suggesting green finance play an essential role to reduce the deterioration of environmental quality, while enhancing economic growth at the same time. In conclusion, BRI member states should continue promoting green finance by implementing incentive schemes, such as subsidising interest rates for the green loan, reducing corporate tax and establishing green credit guarantee scheme. Besides, in order simultaneously enhance economic growth, promote sustainability and achieve the 2030 Sustainable Development Goals, both governments and private sector should work hand in hand to promote green transformation of BRI.
Aims: The fluid of Nepenthes gracilis harbors diverse bacterial taxa that could serve as a gene pool for the discovery of the new genre of antimicrobial agents against multidrug-resistant Klebsiella pneumoniae. The aim of this study was to explore the presence of antibacterial genes in the fluids of N. gracilis growing in the wild. Methods: Using functional metagenomic approach, fosmid clones were isolated and screened for antibacterial activity against three strains of K. pneumoniae. A clone that exhibited the most potent antibacterial activity was sent for sequencing to identify the genes responsible for the observed activity. The secondary metabolites secreted by the selected clone was sequentially extracted using hexane, chloroform, and ethyl acetate. The chemical profiles of a clone (C6) hexane extract were determined by gas chromatography/mass spectrometry (GC-MS). Results: Fosmid clone C6 from the fluid of pitcher plant that exhibited antibacterial activity against three strains of K. pneumoniae was isolated using functional metagenome approach. A majority of the open reading frames detected from C6 were affiliated with the largely understudied Acidocella genus. Among them, the gene that encodes for coproporphyrinogen III oxidase in the heme biosynthesis pathway could be involved in the observed antibacterial activity. Based on the GC-MS analysis, the identities of the putative bioactive compounds were 2,5-di-tert-butylphenol and 1-ethyl-2-methyl cyclododecane. Conclusions: The gene that encodes for coproporphyrinogen III oxidase in the heme biosynthesis pathway as well as the secondary metabolites, namely 2,5-di-tert-butylphenol and 1-ethyl-2-methyl cyclododecane could be the potential antibacterial molecules responsible for the antibacterial activity of C6.
Tropical peat swamp forest is a global store of carbon in a water-saturated, anoxic and acidic environment. This ecosystem holds diverse prokaryotic communities that play a major role in nutrient cycling. A study was conducted in which a total of 24 peat soil samples were collected in three forest types in a tropical peat dome in Sarawak, Malaysia namely, Mixed Peat Swamp (MPS), Alan Batu (ABt), and Alan Bunga (ABg) forests to profile the soil prokaryotic communities through meta 16S amplicon analysis using Illumina Miseq. Results showed these ecosystems were dominated by anaerobes and fermenters such as Acidobacteria, Proteobacteria, Actinobacteria and Firmicutes that cover 80-90% of the total prokaryotic abundance. Overall, the microbial community composition was different amongst forest types and depths. Additionally, this study highlighted the prokaryotic communities' composition in MPS was driven by higher humification level and lower pH whereas in ABt and ABg, the less acidic condition and higher organic matter content were the main factors. It was also observed that prokaryotic diversity and abundance were higher in the more oligotrophic ABt and ABg forest despite the constantly waterlogged condition. In MPS, the methanotroph Methylovirgula ligni was found to be the major species in this forest type that utilize methane (CH4), which could potentially be the contributing factor to the low CH4 gas emissions. Aquitalea magnusonii and Paraburkholderia oxyphila, which can degrade aromatic compounds, were the major species in ABt and ABg forests respectively. This information can be advantageous for future study in understanding the underlying mechanisms of environmental-driven alterations in soil microbial communities and its potential implications on biogeochemical processes in relation to peatland management.