Displaying all 3 publications

Abstract:
Sort:
  1. Choo CK, Kong XY, Goh TL, Ngoh GC, Horri BA, Salamatinia B
    Carbohydr Polym, 2016 Mar 15;138:16-26.
    PMID: 26794733 DOI: 10.1016/j.carbpol.2015.11.060
    Development of new materials for different applications especially as bio-composites has received great attention. This study concentrates on development of a biopolymer based on chitosan (CT) and halloysite nanotubes (HNT) and evaluates the copper removal intake as a potential application of this bio-composite. In this study, CT/HNT beads were prepared by ultrasonic-assisted extrusion-dripping method for the first time. Two sources of HNTs (i.e. Dragonite and Matauri Bay) were added into a chitosan solution (2wt.%) at various loading fractions (25, 50, 75wt.%). The effect of ultrasound as a mixing device was also studied by varying the amplitude at constant frequency of 25%, 50% and 75%. Characteristics and physical properties of the prepared CT/HNT beads were also analyzed by SEM, FTIR, TGA and BET the results show that introducing HNT to chitosan increases the adsorption capacity toward copper ions; however HNT loading fraction above 50wt.% resulted in a decrease in adsorption capacity attributed to limited accessibility of the amino groups. The adsorption capacity of the CT/HNT beads prepared from Dragonite source had a larger adsorption capacity of 14.2mg/g as compared to that of Matauri Bay, 10.55mg/g. It was observed that the adsorption capacity of the beads toward copper ions decreased when the loading fraction of HNT is increased at constant ultrasound amplitude. The result of this study helps to understand the links between the characteristics and adsorption abilities of CT/HNT beads.
  2. Karami A, Golieskardi A, Choo CK, Larat V, Karbalaei S, Salamatinia B
    Sci Total Environ, 2018 Jan 15;612:1380-1386.
    PMID: 28898945 DOI: 10.1016/j.scitotenv.2017.09.005
    No report was found on the occurrence of microplastics in processed seafood products that are manufactured for direct human consumption. This study investigates the potential presence of micro- and mesoplastics in 20 brands of canned sardines and sprats originating from 13 countries over 4 continents followed by their chemical composition determination using micro-Raman spectroscopy. The particles were further inspected for their inorganic composition through energy-dispersive X-ray spectroscopy (EDX). Plastic particles were absent in 16 brands while between 1 and 3 plastic particles per brand were found in the other 4 brands. The most abundant plastic polymers were polypropylene (PP) and polyethylene terephthalate (PET). The presence of micro- and mesoplastics in the canned sardines and sprats might be due to the translocation of these particles into the edible tissues, improper gutting, or the result of contamination from the canneries. The low prevalence of micro- and mesoplastics sized >149μm, and the absence of potentially hazardous inorganic elements on them, might indicate the limited health risks associated with their presence in canned sardines and sprats. Due to the possible increase in micro- and mesoplastic loads in seafood products over time, the findings of this study suggest their quantification to be included as one of the components of food safety management systems.
  3. Karami A, Golieskardi A, Choo CK, Romano N, Ho YB, Salamatinia B
    Sci Total Environ, 2017 Feb 01;578:485-494.
    PMID: 27836345 DOI: 10.1016/j.scitotenv.2016.10.213
    So far, several classes of digesting solutions have been employed to extract microplastics (MPs) from biological matrices. However, the performance of digesting solutions across different temperatures has never been systematically investigated. In the first phase of the present study, we measured the efficiency of different oxidative agents (NaClO or H2O2), bases (NaOH or KOH), and acids [HCl or HNO3; concentrated and diluted (5%)] in digesting fish tissues at room temperature (RT, 25°C), 40, 50, or 60°C. In the second phase, the treatments that were efficient in digesting the biological materials (>95%) were evaluated for their compatibility with eight major plastic polymers (assessed through recovery rate, Raman spectroscopy analysis, and morphological changes). Among the tested solutions, NaClO, NaOH, and diluted acids did not result in a satisfactory digestion efficiency at any of the temperatures. The H2O2 treatment at 50°C efficiently digested the biological materials, although it decreased the recovery rate of nylon-6 (NY6) and nylon-66 (NY66) and altered the colour of polyethylene terephthalate (PET) fragments. Similarly, concentrated HCl and HNO3 treatments at RT fully digested the fish tissues, but also fully dissolved NY6 and NY66, and reduced the recovery rate of most or all of the polymers, respectively. Potassium hydroxide solution fully eliminated the biological matrices at all temperatures. However, at 50 and 60°C, it degraded PET, reduced the recovery rate of PET and polyvinyl chloride (PVC), and changed the colour of NY66. According to our results, treating biological materials with a 10% KOH solution and incubating at 40°C was both time and cost-effective, efficient in digesting biological materials, and had no impact on the integrity of the plastic polymers. Furthermore, coupling this treatment with NaI extraction created a promising protocol to isolate MPs from whole fish samples.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links