The family of Suppressor of Cytokine Signalling (SOCS) proteins plays pivotal roles in cytokine and immune regulation. Despite their key roles, little attention has been given to the SOCS family as compared to other feedback regulators. To date, SOCS proteins have been found to be exploited by viruses such as herpes simplex virus (HSV), hepatitis B virus (HBV), hepatitis C virus (HCV), Zika virus, respiratory syncytial virus (RSV), Ebola virus, influenza A virus (IAV) and SARS-CoV, just to name a few. The hijacking and subsequent upregulation of the SOCS proteins upon viral infection, suppress the associated JAK-STAT signalling activities, thereby reducing the host antiviral response and promoting viral replication. Two SOCS protein family members, SOCS1 and SOCS3 are well-studied and their roles in the JAK-STAT signalling pathway are defined as attenuating interferon (IFN) signalling upon viral infection. The upregulation of SOCS protein by SARS-CoV during the early stages of infection implies strong similarity with SARS-CoV-2, given their closely related genomic organisation. Thus, this review aims to outline the plausibility of SOCS protein inhibitors as a potential therapeutic regimen for COVID-19 patients. We also discuss the antagonists against SOCS protein to offer an overview on the previous 'successes' of SOCS protein inhibition in various viral infections that may portray possible clues for COVID-19 disease management.
Influenza A virus (IAV) poses a major threat to global public health and is known to employ various strategies to usurp the host machinery for survival. Due to its fast-evolving nature, IAVs tend to escape the effect of available drugs and vaccines thus, prompting the development of novel antiviral strategies. High-throughput mass spectrometric screen of host-IAV interacting partners revealed host Filamin A (FLNA), an actin-binding protein involved in regulating multiple signaling pathways, as an interaction partner of IAV nucleoprotein (NP). In this study, we found that the IAV NP interrupts host FLNA-TRAF2 interaction by interacting with FLNA thus, resulting in increased levels of free, displaced TRAF2 molecules available for TRAF2-ASK1 mediated JNK pathway activation, a pathway critical to maintaining efficient viral replication. In addition, siRNA-mediated FLNA silencing was found to promote IAV replication (87% increase) while FLNA-overexpression impaired IAV replication (65% decrease). IAV NP was observed to be a crucial viral factor required to attain FLNA mRNA and protein attenuation post-IAV infection for efficient viral replication. Our results reveal FLNA to be a host factor with antiviral potential hitherto unknown to be involved in the IAV replication cycle thus, opening new possibilities of FLNA-NP interaction as a candidate anti-influenza drug development target.
Small animal models play an important role in investigating and revealing the molecular determinants and mechanisms underlying neuro-virulence of enterovirus A71 (EV-A71). In our previous study, we successfully developed two mouse cell-line replication competent EV-A71 strains (EV71:TLLm and EV71:TLLmv) which were capable of inducing neuro-invasion in BALB/c mice. The more virulent EV71:TLLmv exhibited ability to induce acute encephalomyelitis accompanied by neurogenic pulmonary oedema. EV71:TLLcho virus strain was generated from EV71:TLLm by a series of passages in CHO-K1 cells. EV71:TLLcho demonstrated a broader range of infectivity across various mammalian cell lines and exhibited complete cytopathic effects (CPE) within 48 hours post-inoculation in comparison to EV71:TLLm or EV71:TLLmv. EV71:TLLcho consistently yielded higher levels of viral replication at all time points examined. In comparison to EV71:TLLm, EV71:TLLcho consistently induced more severe disease and increased mortality in one-week old BALB/c mice. However, unlike mice challenged with EV71:TLLmv, none of the mice challenged with EV71:TLLcho progressed to severe acute encephalomyelitis and developed neurogenic pulmonary oedema.