METHODS: We piloted a COVID-19 smell clinic. We recorded patient demographics and clinical characteristics then performed clinical assessment of each patient. Quantitative measurements of olfactory dysfunction were recorded using the University of Pennsylvania Smell Identification Test (UPSIT). We measured the impact of olfactory dysfunction on patient quality of life using the validated English Olfactory Disorders Questionnaire (eODQ).
RESULTS: 20 patients participated in the clinic. 4 patients were excluded from analysis due to missing data. Median age was 35 years. 81% (n=13) of the participants were female. 50% (n=8) of patients suffered with a combination of anosmia/ageusia and parosmia, whilst 43% (n=7) of patients suffered with anosmia/ageusia without parosmia. Almost all the patients registered UPSIT scores in keeping with impaired olfaction. Patient scores ranged from 22 to 35, with the median score at 30. All patients reported that their olfactory dysfunction had an impact on their quality of life. The median eODQ score reported was 90, with scores ranging from 42 to 169 out of a maximum of 180.
CONCLUSION: We have demonstrated that it is simple and feasible to set up a COVID-19 smell clinic. The materials are inexpensive, but supervised completion of the UPSIT and eODQ is time-consuming. Patients demonstrate reduced olfaction on quantitative testing and experience significant impacts on their quality of life as a result. More research is needed to demonstrate if olfactory training results in measurable improvements in smell test scores and quality of life.
METHOD: The cell viability, sphere-forming and xenografts assay were used to evaluate the ability of ASIV to reverse taxol-resistance. Immunohistochemistry, cytokine application, small-interfering RNA, small molecule inhibitors, and RNA-seq approaches were applied to characterize the molecular mechanism of inhibition of epiregulin (EREG) and downstream signaling by ASIV to reverse taxol-resistance.
RESULTS: ASIV reversed taxol resistance through suppression of the stemness-associated genes of spheres in NSCLC. The mechanism exploration revealed that ASIV promoted the K48-linked polyubiquitination of EREG along with degradation. Moreover, EREG could be triggered by chemo-drug treatment. Consequently, EREG bound to the ErbB receptor and activated the ERK signal to regulate the expression of the stemness-associated genes. Inhibition of EREG/ErbB/ERK could reverse the taxol-resistance by inhibiting the stemness-associated genes. Finally, it was observed that TGFβ and Hedgehog signaling were downstream of EREG/ErbB/ERK, which could be targeted using inhibitors to reverse the taxol resistance of NSCLC.
CONCLUSIONS: These findings revealed that inhibition of EREG by ASIV reversed taxol-resistance through suppression of the stemness of NSCLC via EREG/ErbB/ERK-TGFβ, Hedgehog axis.