Displaying all 4 publications

Abstract:
Sort:
  1. Lea AJ, Clark AG, Dahl AW, Devinsky O, Garcia AR, Golden CD, et al.
    PLoS Biol, 2023 Sep;21(9):e3002311.
    PMID: 37695771 DOI: 10.1371/journal.pbio.3002311
    Noncommunicable diseases (NCDs) are on the rise worldwide. Obesity, cardiovascular disease, and type 2 diabetes are among a long list of "lifestyle" diseases that were rare throughout human history but are now common. The evolutionary mismatch hypothesis posits that humans evolved in environments that radically differ from those we currently experience; consequently, traits that were once advantageous may now be "mismatched" and disease causing. At the genetic level, this hypothesis predicts that loci with a history of selection will exhibit "genotype by environment" (GxE) interactions, with different health effects in "ancestral" versus "modern" environments. To identify such loci, we advocate for combining genomic tools in partnership with subsistence-level groups experiencing rapid lifestyle change. In these populations, comparisons of individuals falling on opposite extremes of the "matched" to "mismatched" spectrum are uniquely possible. More broadly, the work we propose will inform our understanding of environmental and genetic risk factors for NCDs across diverse ancestries and cultures.
  2. Lea AJ, Clark AG, Dahl AW, Devinsky O, Garcia AR, Golden CD, et al.
    ArXiv, 2023 Feb 13.
    PMID: 36713247
    Globally, we are witnessing the rise of complex, non-communicable diseases (NCDs) related to changes in our daily environments. Obesity, asthma, cardiovascular disease, and type 2 diabetes are part of a long list of "lifestyle" diseases that were rare throughout human history but are now common. A key idea from anthropology and evolutionary biology-the evolutionary mismatch hypothesis-seeks to explain this phenomenon. It posits that humans evolved in environments that radically differ from the ones experienced by most people today, and thus traits that were advantageous in past environments may now be "mismatched" and disease-causing. This hypothesis is, at its core, a genetic one: it predicts that loci with a history of selection will exhibit "genotype by environment" (GxE) interactions and have differential health effects in ancestral versus modern environments. Here, we discuss how this concept could be leveraged to uncover the genetic architecture of NCDs in a principled way. Specifically, we advocate for partnering with small-scale, subsistence-level groups that are currently transitioning from environments that are arguably more "matched" with their recent evolutionary history to those that are more "mismatched". These populations provide diverse genetic backgrounds as well as the needed levels and types of environmental variation necessary for mapping GxE interactions in an explicit mismatch framework. Such work would make important contributions to our understanding of environmental and genetic risk factors for NCDs across diverse ancestries and sociocultural contexts.
  3. Feng S, Stiller J, Deng Y, Armstrong J, Fang Q, Reeve AH, et al.
    Nature, 2021 Apr;592(7856):E24.
    PMID: 33833441 DOI: 10.1038/s41586-021-03473-8
  4. Feng S, Stiller J, Deng Y, Armstrong J, Fang Q, Reeve AH, et al.
    Nature, 2020 11;587(7833):252-257.
    PMID: 33177665 DOI: 10.1038/s41586-020-2873-9
    Whole-genome sequencing projects are increasingly populating the tree of life and characterizing biodiversity1-4. Sparse taxon sampling has previously been proposed to confound phylogenetic inference5, and captures only a fraction of the genomic diversity. Here we report a substantial step towards the dense representation of avian phylogenetic and molecular diversity, by analysing 363 genomes from 92.4% of bird families-including 267 newly sequenced genomes produced for phase II of the Bird 10,000 Genomes (B10K) Project. We use this comparative genome dataset in combination with a pipeline that leverages a reference-free whole-genome alignment to identify orthologous regions in greater numbers than has previously been possible and to recognize genomic novelties in particular bird lineages. The densely sampled alignment provides a single-base-pair map of selection, has more than doubled the fraction of bases that are confidently predicted to be under conservation and reveals extensive patterns of weak selection in predominantly non-coding DNA. Our results demonstrate that increasing the diversity of genomes used in comparative studies can reveal more shared and lineage-specific variation, and improve the investigation of genomic characteristics. We anticipate that this genomic resource will offer new perspectives on evolutionary processes in cross-species comparative analyses and assist in efforts to conserve species.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links