Displaying all 9 publications

Abstract:
Sort:
  1. Clarke JT
    Ind Med Gaz, 1901 Oct;36(10):396.
    PMID: 29004191
  2. Clarke JT
    Ind Med Gaz, 1901 Mar;36(3):114.
    PMID: 29004052
  3. Clarke JT, Hewlett RT, Wright H, Sambon LW, Galloway DJ, Stedman FO, et al.
    Br Med J, 1905;2(2341):1287-1289.
  4. Patel JJ, Ortiz-Reyes A, Dhaliwal R, Clarke J, Hill A, Stoppe C, et al.
    Crit Care Med, 2022 Mar 01;50(3):e304-e312.
    PMID: 34637420 DOI: 10.1097/CCM.0000000000005320
    OBJECTIVES: To conduct a systematic review and meta-analysis to evaluate the impact of IV vitamin C on outcomes in critically ill patients.

    DATA SOURCES: Systematic search of MEDLINE, EMBASE, CINAHL, and the Cochrane Register of Controlled Trials.

    STUDY SELECTION: Randomized controlled trials testing IV vitamin C in critically ill patients.

    DATA ABSTRACTION: Two independent reviewers abstracted patient characteristics, treatment details, and clinical outcomes.

    DATA SYNTHESIS: Fifteen studies involving 2,490 patients were identified. Compared with placebo, IV vitamin C administration is associated with a trend toward reduced overall mortality (relative risk, 0.87; 95% CI, 0.75-1.00; p = 0.06; test for heterogeneity I2 = 6%). High-dose IV vitamin C was associated with a significant reduction in overall mortality (relative risk, 0.70; 95% CI, 0.52-0.96; p = 0.03), whereas low-dose IV vitamin C had no effect (relative risk, 0.94; 95% CI, 0.79-1.07; p = 0.46; test for subgroup differences, p = 0.14). IV vitamin C monotherapy was associated with a significant reduction in overall mortality (relative risk, 0.64; 95% CI, 0.49-0.83; p = 0.006), whereas there was no effect with IV vitamin C combined therapy. No trial reported an increase in adverse events related to IV vitamin C.

    CONCLUSIONS: IV vitamin C administration appears safe and may be associated with a trend toward reduction in overall mortality. High-dose IV vitamin C monotherapy may be associated with improved overall mortality, and further randomized controlled trials are warranted.

  5. Demarchi B, Stiller J, Grealy A, Mackie M, Deng Y, Gilbert T, et al.
    Proc Natl Acad Sci U S A, 2022 Oct 25;119(43):e2109326119.
    PMID: 35609205 DOI: 10.1073/pnas.2109326119
    The realization that ancient biomolecules are preserved in "fossil" samples has revolutionized archaeological science. Protein sequences survive longer than DNA, but their phylogenetic resolution is inferior; therefore, careful assessment of the research questions is required. Here, we show the potential of ancient proteins preserved in Pleistocene eggshell in addressing a longstanding controversy in human and animal evolution: the identity of the extinct bird that laid large eggs which were exploited by Australia's indigenous people. The eggs had been originally attributed to the iconic extinct flightless bird Genyornis newtoni (†Dromornithidae, Galloanseres) and were subsequently dated to before 50 ± 5 ka by Miller et al. [Nat. Commun. 7, 10496 (2016)]. This was taken to represent the likely extinction date for this endemic megafaunal species and thus implied a role of humans in its demise. A contrasting hypothesis, according to which the eggs were laid by a large mound-builder megapode (Megapodiidae, Galliformes), would therefore acquit humans of their responsibility in the extinction of Genyornis. Ancient protein sequences were reconstructed and used to assess the evolutionary proximity of the undetermined eggshell to extant birds, rejecting the megapode hypothesis. Authentic ancient DNA could not be confirmed from these highly degraded samples, but morphometric data also support the attribution of the eggshell to Genyornis. When used in triangulation to address well-defined hypotheses, paleoproteomics is a powerful tool for reconstructing the evolutionary history in ancient samples. In addition to the clarification of phylogenetic placement, these data provide a more nuanced understanding of the modes of interactions between humans and their environment.
  6. Mellone M, Hanley CJ, Thirdborough S, Mellows T, Garcia E, Woo J, et al.
    Aging (Albany NY), 2016 12 15;9(1):114-132.
    PMID: 27992856 DOI: 10.18632/aging.101127
    Cancer-associated fibroblasts (CAF) remain a poorly characterized, heterogeneous cell population. Here we characterized two previously described tumor-promoting CAF sub-types, smooth muscle actin (SMA)-positive myofibroblasts and senescent fibroblasts, identifying a novel link between the two. Analysis of CAF cultured ex vivo, showed that senescent CAF are predominantly SMA-positive; this was confirmed by immunochemistry in head & neck (HNSCC) and esophageal (EAC) cancers. In vitro, we found that fibroblasts induced to senesce develop molecular, ultrastructural and contractile features typical of myofibroblasts and this is dependent on canonical TGF-β signaling. Similar to TGF-β1-generated myofibroblasts, these cells secrete soluble factors that promote tumor cell motility. However, RNA-sequencing revealed significant transcriptomic differences between the two SMA-positive CAF groups, particularly in genes associated with extracellular matrix (ECM) deposition and organization, which differentially promote tumor cell invasion. Notably, second harmonic generation imaging and bioinformatic analysis of SMA-positive human HNSCC and EAC showed that collagen fiber organization correlates with poor prognosis, indicating that heterogeneity within the SMA-positive CAF population differentially impacts on survival. These results show that non-fibrogenic, SMA-positive myofibroblasts can be directly generated through induction of fibroblast senescence and suggest that senescence and myofibroblast differentiation are closely linked processes.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links