DESIGN: This was a single-center double-blind randomized controlled trial comparing continuous venovenous hemofiltration-high cutoff to continuous venovenous hemofiltration-standard.
SETTING: Tertiary care hospital in Australia.
PATIENTS: Vasopressor-dependent patients in acute kidney injury who were admitted to the ICU.
INTERVENTIONS: Norepinephrine-free time were calculated in critically ill vasopressor-dependent patients in acute kidney injury, randomized to either continuous venovenous hemofiltration-high cutoff or continuous venovenous hemofiltration-standard.
MEASUREMENT AND MAIN RESULTS: A total of 76 patients were randomized with the following characteristics (continuous venovenous hemofiltration-high cutoff vs continuous venovenous hemofiltration-standard); median age of 65 versus 70 year, percentage of males 47% versus 68%, and median Acute Physiology and Chronic Health Evaluation scores of 25 versus 23.5. The median hours of norepinephrine-free time at day 7 were 32 (0-110.8) for continuous venovenous hemofiltration-high cutoff and 56 hours (0-109.3 hr) (p = 0.520) for continuous venovenous hemofiltration-standard. Inhospital mortality was 55.6% with continuous venovenous hemofiltration-high cutoff versus 34.2% with continuous venovenous hemofiltration-standard (adjusted odds ratio, 2.49; 95% CI, 0.81-7.66; p = 0.191). There was no significant difference in time to cessation of norepinephrine (p = 0.358), time to cessation of hemofiltration (p = 0.563), and filter life (p = 0.21). Serum albumin levels (p = 0.192) were similar and the median dose of IV albumin given was 90 grams (20-212 g) for continuous venovenous hemofiltration-high cutoff and 80 grams (15-132 g) for continuous venovenous hemofiltration-standard (p = 0.252).
CONCLUSIONS: In critically ill patients with acute kidney injury, continuous venovenous hemofiltration-high cutoff did not reduce the duration of vasopressor support or mortality or change albumin levels compared with continuous venovenous hemofiltration-standard.
DESIGN: Harmonized data from prospective multicenter international longitudinal cohort studies SETTING:: Diverse mix of ICUs.
PATIENTS: Critically ill patients expected to be ventilated for longer than 24 hours.
INTERVENTIONS: Richmond Agitation Sedation Scale and pain were assessed every 4 hours. Delirium and mobilization were assessed daily using the Confusion Assessment Method of ICU and a standardized mobility assessment, respectively.
MEASUREMENTS AND MAIN RESULTS: Sedation intensity was assessed using a Sedation Index, calculated as the sum of negative Richmond Agitation Sedation Scale measurements divided by the total number of assessments. We used multivariable Cox proportional hazard models to adjust for relevant covariates. We performed subgroup and sensitivity analysis accounting for immortal time bias using the same variables within 120 and 168 hours. The main outcome was 180-day survival. We assessed 703 patients in 42 ICUs with a mean (SD) Acute Physiology and Chronic Health Evaluation II score of 22.2 (8.5) with 180-day mortality of 32.3% (227). The median (interquartile range) ventilation time was 4.54 days (2.47-8.43 d). Delirium occurred in 273 (38.8%) of patients. Sedation intensity, in an escalating dose-dependent relationship, independently predicted increased risk of death (hazard ratio [95% CI], 1.29 [1.15-1.46]; p < 0.001, delirium hazard ratio [95% CI], 1.25 [1.10-1.43]), p value equals to 0.001 and reduced chance of early extubation hazard ratio (95% CI) 0.80 (0.73-0.87), p value of less than 0.001. Agitation level independently predicted subsequent delirium hazard ratio [95% CI], of 1.25 (1.04-1.49), p value equals to 0.02. Delirium or mobilization episodes within 168 hours, adjusted for sedation intensity, were not associated with survival.
CONCLUSIONS: Sedation intensity independently, in an ascending relationship, predicted increased risk of death, delirium, and delayed time to extubation. These observations suggest that keeping sedation level equivalent to a Richmond Agitation Sedation Scale 0 is a clinically desirable goal.
DESIGN: A multicenter, retrospective, descriptive cohort study.
SETTING: Ten multidisciplinary PICUs in Asia.
PATIENTS: All mechanically ventilated children meeting the Pediatric Acute Lung Injury Consensus Conference criteria for PARDS between 2009 and 2015.
INTERVENTIONS: None.
MEASUREMENTS AND MAIN RESULTS: Data on epidemiology, ventilation, adjunct therapies, and clinical outcomes were collected. Patients were followed for 100 days post diagnosis of PARDS. A total of 373 patients were included. There were 89 (23.9%), 149 (39.9%), and 135 (36.2%) patients with mild, moderate, and severe PARDS, respectively. The most common risk factor for PARDS was pneumonia/lower respiratory tract infection (309 [82.8%]). Higher category of severity of PARDS was associated with lower ventilator-free days (22 [17-25], 16 [0-23], 6 [0-19]; p < 0.001 for mild, moderate, and severe, respectively) and PICU free days (19 [11-24], 15 [0-22], 5 [0-20]; p < 0.001 for mild, moderate, and severe, respectively). Overall PICU mortality for PARDS was 113 of 373 (30.3%), and 100-day mortality was 126 of 317 (39.7%). After adjusting for site, presence of comorbidities and severity of illness in the multivariate Cox proportional hazard regression model, patients with moderate (hazard ratio, 1.88 [95% CI, 1.03-3.45]; p = 0.039) and severe PARDS (hazard ratio, 3.18 [95% CI, 1.68, 6.02]; p < 0.001) had higher risk of mortality compared with those with mild PARDS.
CONCLUSIONS: Mortality from PARDS is high in Asia. The Pediatric Acute Lung Injury Consensus Conference definition of PARDS is a useful tool for risk stratification.
DESIGN: We conducted a systematic literature review and meta-analysis searching MEDLINE, Cumulative Index to Nursing and Allied Health Literature, and the Cochrane Library from inception to April 1, 2017, for studies.
INTERVENTIONS: Mortality rates were compared between severely ill patients receiving piperacillin-tazobactam via prolonged infusion or intermittent infusion. Included studies must have reported severity of illness scores, which were transformed into average study-level mortality probabilities.
MEASUREMENTS AND MAIN RESULTS: Two investigators independently screened titles, abstracts, and full texts of studies meeting inclusion criteria for this systematic review and meta-analysis. Variables included author name, publication year, study design, demographics, total daily dose(s), average estimated creatinine clearance, type of prolonged infusion, prevalence of combination therapy, severity of illness scores, infectious sources, all-cause mortality, clinical cure, microbiological cure, and hospital and ICU length of stay. The review identified 18 studies including 3,401 patients who received piperacillin-tazobactam, 56.7% via prolonged infusion. Across all studies, the majority of patients had an identified primary infectious source. Receipt of prolonged infusion was associated with a 1.46-fold lower odds of mortality (95% CI, 1.20-1.77) in the pooled analysis. Patients receiving prolonged infusion had a 1.77-fold higher odds of clinical cure (95% CI, 1.24-2.54) and a 1.22-fold higher odds of microbiological cure (95% CI, 0.84-1.77). Subanalyses were conducted according to high (≥ 20%) and low (< 20%) average study-level mortality probabilities. In studies reporting higher mortality probabilities, effect sizes were variable but similar to the pooled results.
CONCLUSIONS: Receipt of prolonged infusion of piperacillin-tazobactam was associated with reduced mortality and improved clinical cure rates across diverse cohorts of severely ill patients.
DESIGN: Cross-sectional observational study.
SETTING: Twenty-three Asian countries and regions, covering 92.1% of the continent's population.
PARTICIPANTS: Ten low-income and lower-middle-income economies, five upper-middle-income economies, and eight high-income economies according to the World Bank classification.
INTERVENTIONS: Data closest to 2017 on critical care beds, including ICU and intermediate care unit beds, were obtained through multiple means, including government sources, national critical care societies, colleges, or registries, personal contacts, and extrapolation of data.
MEASUREMENTS AND MAIN RESULTS: Cumulatively, there were 3.6 critical care beds per 100,000 population. The median number of critical care beds per 100,000 population per country and region was significantly lower in low- and lower-middle-income economies (2.3; interquartile range, 1.4-2.7) than in upper-middle-income economies (4.6; interquartile range, 3.5-15.9) and high-income economies (12.3; interquartile range, 8.1-20.8) (p = 0.001), with a large variation even across countries and regions of the same World Bank income classification. This number was independently predicted by the World Bank income classification on multivariable analysis, and significantly correlated with the number of acute hospital beds per 100,000 population (r = 0.19; p = 0.047), the universal health coverage service coverage index (r = 0.35; p = 0.003), and the Human Development Index (r = 0.40; p = 0.001) on univariable analysis.
CONCLUSIONS: Critical care bed capacity varies widely across Asia and is significantly lower in low- and lower-middle-income than in upper-middle-income and high-income countries and regions.
DESIGN: This was a single-center prospective observational study that compared resting energy expenditure estimated by 15 commonly used predictive equations against resting energy expenditure measured by indirect calorimetry at different phases. Degree of agreement between resting energy expenditure calculated by predictive equations and resting energy expenditure measured by indirect calorimetry was analyzed using intraclass correlation coefficient and Bland-Altman analyses. Resting energy expenditure values calculated from predictive equations differing by ± 10% from resting energy expenditure measured by indirect calorimetry was used to assess accuracy. A score ranking method was developed to determine the best predictive equations.
SETTING: General Intensive Care Unit, University of Malaya Medical Centre.
PATIENTS: Mechanically ventilated critically ill patients.
INTERVENTIONS: None.
MEASUREMENTS AND MAIN RESULTS: Indirect calorimetry was measured thrice during acute, late, and chronic phases among 305, 180, and 91 ICU patients, respectively. There were significant differences (F= 3.447; p = 0.034) in mean resting energy expenditure measured by indirect calorimetry among the three phases. Pairwise comparison showed mean resting energy expenditure measured by indirect calorimetry in late phase (1,878 ± 517 kcal) was significantly higher than during acute phase (1,765 ± 456 kcal) (p = 0.037). The predictive equations with the best agreement and accuracy for acute phase was Swinamer (1990), for late phase was Brandi (1999) and Swinamer (1990), and for chronic phase was Swinamer (1990). None of the resting energy expenditure calculated from predictive equations showed very good agreement or accuracy.
CONCLUSIONS: Predictive equations tend to either over- or underestimate resting energy expenditure at different phases. Predictive equations with "dynamic" variables and respiratory data had better agreement with resting energy expenditure measured by indirect calorimetry compared with predictive equations developed for healthy adults or predictive equations based on "static" variables. Although none of the resting energy expenditure calculated from predictive equations had very good agreement, Swinamer (1990) appears to provide relatively good agreement across three phases and could be used to predict resting energy expenditure when indirect calorimetry is not available.
DATA SOURCES: Systematic search of MEDLINE, EMBASE, CINAHL, and the Cochrane Register of Controlled Trials.
STUDY SELECTION: Randomized controlled trials testing IV vitamin C in critically ill patients.
DATA ABSTRACTION: Two independent reviewers abstracted patient characteristics, treatment details, and clinical outcomes.
DATA SYNTHESIS: Fifteen studies involving 2,490 patients were identified. Compared with placebo, IV vitamin C administration is associated with a trend toward reduced overall mortality (relative risk, 0.87; 95% CI, 0.75-1.00; p = 0.06; test for heterogeneity I2 = 6%). High-dose IV vitamin C was associated with a significant reduction in overall mortality (relative risk, 0.70; 95% CI, 0.52-0.96; p = 0.03), whereas low-dose IV vitamin C had no effect (relative risk, 0.94; 95% CI, 0.79-1.07; p = 0.46; test for subgroup differences, p = 0.14). IV vitamin C monotherapy was associated with a significant reduction in overall mortality (relative risk, 0.64; 95% CI, 0.49-0.83; p = 0.006), whereas there was no effect with IV vitamin C combined therapy. No trial reported an increase in adverse events related to IV vitamin C.
CONCLUSIONS: IV vitamin C administration appears safe and may be associated with a trend toward reduction in overall mortality. High-dose IV vitamin C monotherapy may be associated with improved overall mortality, and further randomized controlled trials are warranted.
DESIGN: A post hoc subgroup analysis of the effect of higher protein dosing in critically ill patients with high nutritional risk (EFFORT Protein): an international, multicenter, pragmatic, registry-based randomized trial.
SETTING: Eighty-five adult ICUs across 16 countries.
PATIENTS: Patients with obesity defined as a body mass index (BMI) greater than or equal to 30 kg/m 2 ( n = 425).
INTERVENTIONS: In the primary study, patients were randomized into a high-dose (≥ 2.2 g/kg/d) or usual-dose protein group (≤ 1.2 g/kg/d).
MEASUREMENTS AND MAIN RESULTS: Protein intake was monitored for up to 28 days, and outcomes (time to discharge alive [TTDA], 60-d mortality, days of mechanical ventilation [MV], hospital, and ICU length of stay [LOS]) were recorded until 60 days post-randomization. Of the 1301 patients in the primary study, 425 had a BMI greater than or equal to 30 kg/m 2 . After adjusting for sites and covariates, we observed a nonsignificant slower rate of TTDA with higher protein that ruled out a clinically important benefit (hazard ratio, 0.78; 95% CI, 0.58-1.05; p = 0.10). We found no evidence of difference in TTDA between protein groups when subgroups with different classes of obesity or patients with and without various nutritional and frailty risk variables were examined, even after the removal of patients with baseline acute kidney injury. Overall, 60-day mortality rates were 31.5% and 28.2% in the high protein and usual protein groups, respectively (risk difference, 3.3%; 95% CI, -5.4 to 12.1; p = 0.46). Duration of MV and LOS in hospital and ICU were not significantly different between groups.
CONCLUSIONS: In critically ill patients with obesity, higher protein doses did not improve clinical outcomes, including those with higher nutritional and frailty risk.
DATA SOURCES: None.
STUDY SELECTION: Current literature describing the conduct, reporting, and appraisal of systematic reviews and meta-analyses.
DATA EXTRACTION: Best practices for conducting, reporting, and appraising systematic review were summarized.
DATA SYNTHESIS: A systematic review is a review of a clearly formulated question that uses systematic and explicit methods to identify, select, and critically appraise relevant original research, and to collect and analyze data from the studies that are included in the review. Critical appraisal methods address both the credibility (quality of conduct) and rate the confidence in the quality of summarized evidence from a systematic review. The A Measurement Tool to Assess Systematic Reviews-2 tool is a widely used practical tool to appraise the conduct of a systematic review. Confidence in estimates of effect is determined by assessing for risk of bias, inconsistency of results, imprecision, indirectness of evidence, and publication bias.
CONCLUSIONS: Systematic reviews are transparent and reproducible summaries of research and conclusions drawn from them are only as credible and reliable as their development process and the studies which form the systematic review. Applying evidence from a systematic review to patient care considers whether the results can be directly applied, whether all important outcomes have been considered, and if the benefits are worth potential harms and costs.
DATA SOURCES: MEDLINE, Embase, CINAHL, and Cochrane Central were searched from inception to February 10, 2023.
STUDY SELECTION: RCTs evaluating the effect of enteral or IV glutamine supplementation alone in severe adult burn patients were included.
DATA EXTRACTION: Two reviewers independently extracted data on study characteristics, burn injury characteristics, description of the intervention between groups, adverse events, and clinical outcomes.
DATA SYNTHESIS: Random effects meta-analyses were performed to estimate the pooled risk ratio (RR). Trial sequential analyses (TSA) for mortality and infectious complications were performed. Ten RCTs (1,577 patients) were included. We observed no significant effect of glutamine supplementation on overall mortality (RR, 0.65, 95% CI, 0.33-1.28; p = 0.21), infectious complications (RR, 0.83; 95% CI, 0.63-1.09; p = 0.18), or other secondary outcomes. In subgroup analyses, we observed no significant effects based on administration route or burn severity. We did observe a significant subgroup effect between single and multicenter RCTs in which glutamine significantly reduced mortality and infectious complications in singe-center RCTs but not in multicenter RCTs. However, TSA showed that the pooled results of single-center RCTs were type 1 errors and further trials would be futile.
CONCLUSIONS: Glutamine supplementation, regardless of administration, does not appear to improve clinical outcomes in severely adult burned patients.
DESIGN: Multicenter prospective before-and-after comparison design study.
SETTING: Twenty-one PICUs.
PATIENTS: Patients fulfilled the Pediatric Acute Lung Injury Consensus Conference 2015 definition of PARDS and were on invasive mechanical ventilation.
INTERVENTIONS: The LPMV protocol included a limit on peak inspiratory pressure (PIP), delta/driving pressure (DP), tidal volume, positive end-expiratory pressure (PEEP) to F io2 combinations of the low PEEP acute respiratory distress syndrome network table, permissive hypercarbia, and conservative oxygen targets.
MEASUREMENTS AND MAIN RESULTS: There were 285 of 693 (41·1%) and 408 of 693 (58·9%) patients treated with and without the LPMV protocol, respectively. Median age and oxygenation index was 1.5 years (0.4-5.3 yr) and 10.9 years (7.0-18.6 yr), respectively. There was no difference in 60-day mortality between LPMV and non-LPMV protocol groups (65/285 [22.8%] vs. 115/406 [28.3%]; p = 0.104). However, total adherence score did improve in the LPMV compared to non-LPMV group (57.1 [40.0-66.7] vs. 47.6 [31.0-58.3]; p < 0·001). After adjusting for confounders, adherence to LPMV strategies (adjusted hazard ratio, 0.98; 95% CI, 0.97-0.99; p = 0.004) but not the LPMV protocol itself was associated with a reduced risk of 60-day mortality. Adherence to PIP, DP, and PEEP/F io2 combinations were associated with reduced mortality.
CONCLUSIONS: Adherence to LPMV elements over the first week of PARDS was associated with reduced mortality. Future work is needed to improve implementation of LPMV in order to improve adherence.
DATA SOURCES: An updated systematic search was performed in three databases until September 4, 2024. The study adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 guidelines and the protocol was preregistered in PROSPERO (CRD42024546387).
STUDY SELECTION: Randomized controlled trials that studied adult critically ill patients comparing protein doses delivered enterally and/or parenterally with similar energy delivery between groups were included.
DATA EXTRACTION: Data extraction was performed by two authors independently, using a predefined worksheet. The primary outcome was mortality. Posterior probabilities of any benefit (relative risk [RR] < 1.00) or harm (RR > 1.00) and other important beneficial and harmful effect size thresholds were estimated. Risk of bias assessment was performed using the risk of bias 2.0 tool. All analyses were performed using a Bayesian hierarchical random-effects models, under vague priors.
DATA SYNTHESIS: Twenty-two randomized trials ( n = 4164 patients) were included. The mean protein delivery in the higher and lower protein groups was 1.5 ± 0.6 vs. 0.9 ± 0.4 g/kg/d. The median RR for mortality was 1.01 (95% credible interval, 0.84-1.16). The posterior probability of any mortality benefit from higher protein delivery was 43.6%, while the probability of any harm was 56.4%. The probabilities of a 1% (RR < 0.99) and 5% (RR < 0.95) mortality reduction by higher protein delivery were 38.7% and 22.9%, respectively. Conversely, the probabilities of a 1% (RR > 1.01) and 5% (RR > 1.05) mortality increase were 51.5% and 32.4%, respectively.
CONCLUSIONS: There is a considerable probability of an increased mortality risk with higher protein delivery in critically ill patients, although a clinically beneficial effect cannot be completely eliminated based on the current data.