Gelucire 50/13 alone and solid dispersions in this material containing two model drugs (10% w/w caffeine and paracetamol) have been studied with a view to establishing the mechanism underpinning changes in drug-release characteristics as a function of storage time and temperature. The lipid systems were fabricated into tablets and stored for up to 180 days at temperatures of 20 and 37 degrees C. The dispersions were studied using differential scanning calorimetry (DSC), scanning electron microscopy, and dissolution testing. DSC studies indicated that the Gelucire 50/13 exists in two principal melting forms (melting points 38 and 43 degrees C) that undergo transformation to the higher melting form on storage at 37 degrees C. Scanning electron microscopy studies indicated that the systems exhibit "blooming," with crystal formation on the surface being apparent on storage at both temperatures. The dissolution rate increased on storage, with the effect being particularly marked at higher storage temperatures and for the paracetamol systems. However, whereas these changes corresponded well to those seen for the morphology, the correlation between the changes in dissolution and those of the DSC profiles was poor. The study has suggested a novel explanation for the storage instability of Gelucire 50/13 whereby the change in dissolution is associated not with molecular rearrangement as such but with the gross distribution of the constituent components, this in turn altering the physical integrity of the lipid bases.
Drug permeation through the intercellular lipids, which pack around and between corneocytes, may be enhanced by increasing the thermodynamic activity of the active in a formulation. However, this may also result in unwanted drug crystallisation on and in the skin. In this work, we explore the combination of ATR-FTIR spectroscopy and multivariate data analysis to study drug crystallisation in the skin. Ex vivo permeation studies of saturated solutions of diclofenac sodium (DF Na) in two vehicles, propylene glycol (PG) and dimethyl sulphoxide (DMSO), were carried out in porcine ear skin. Tape stripping and ATR-FTIR spectroscopy were conducted simultaneously to collect spectral data as a function of skin depth. Multivariate data analysis was applied to visualise and categorise the spectral data in the region of interest (1700-1500cm(-1)) containing the carboxylate (COO(-)) asymmetric stretching vibrations of DF Na. Spectral data showed the redshifts of the COO(-) asymmetric stretching vibrations for DF Na in the solution compared with solid drug. Similar shifts were evident following application of saturated solutions of DF Na to porcine skin samples. Multivariate data analysis categorised the spectral data based on the spectral differences and drug crystallisation was found to be confined to the upper layers of the skin. This proof-of-concept study highlights the utility of ATR-FTIR spectroscopy in combination with multivariate data analysis as a simple and rapid approach in the investigation of drug deposition in the skin. The approach described here will be extended to the study of other actives for topical application to the skin.