The pollution of heavy metals and toxic xenobiotics has become a central issue worldwide.
Bioremediation of these toxicants are being constantly carried out using novel microbes.
Molybdenum reduction to molybdenum blue is a detoxification process and mathematical
modelling of the reduction process can reveal important parameters such as specific reduction
rate, theoretical maximum reduction and whether reduction at high molybdenum concentration
affected the lag period of reduction. The used of linearization method through the use of natural
logarithm transformation, although popular, is inaccurate and can only give an approximate
value for the sole parameter measured; the specific growth rate. In this work, a variety of
models for such as logistic, Gompertz, Richards, Schnute, Baranyi-Roberts, Von Bertalanffy,
Buchanan three-phase and more recently Huang were utilized for the first time to obtain values
for the above parameters or constants. The modified Gompertz model was the best model in
modelling the Mo-blue production curve from Serratia marcescens strain DR.Y10 based on
statistical tests such as root-mean-square error (RMSE), adjusted coefficient of determination
(R2), bias factor (BF), accuracy factor (AF) and corrected AICc (Akaike Information Criterion).
Parameters obtained from the fitting exercise were maximum Mo-blue production rate (μm), lag
time (l) and maximal Mo-blue production (Ymax) of X (h-1), Y (h) and Z (nmole Mo-blue),
respectively. The application of primary population growth models in modelling the Moblue
production rate from this bacterium has become a successful undertaking. The model
may also be used in other heavy metals detoxification processes. The parameters
constants extracted from this work will be a substantial help for the future development
of further secondary models.
The volume of contaminated rivers in Malaysia continues to keep rising through the years. The
cost of instrumental monitoring is uneconomical and prohibits schedule monitoring of
contaminants particularly heavy metals. In this work, a rapid enzyme assay utilizing the
molybdenum-reducing enzyme as an inhibitive assay, prepared in crude form from the
molybdenum-reducing bacterium Serratia sp. strain DRY5 has been developed for monitoring
the heavy metals mercury, silver, copper and chromium in contaminated waters in the Juru
Industrial Estate. The crude enzyme extract transformed soluble molybdenum
(phosphomolybdate) into a deep blue solution, which is inhibited by heavy metals such as
mercury, silver, copper and chromium. The IC50 and Limits of Detection (LOD) values for
mercury, copper, silver and cadmium were 0.245, 0.298, 0.367, 0.326, and 0.124, 0.086, 0.088
and 0.094 mg L-1, respectively. The assay is rapid, and can be carried out in less than 10 minutes.
In addition, the assay can be carried out at ambient temperature. The IC50 values for these heavy
metals are more sensitive than several established assays. Water samples from various locations
in the month of November from the Juru Industrial Estate (Penang) were tested for the presence
of heavy metals using the developed assay. Enzyme activity was nearly inhibited for water
samples from several locations. The presence of heavy metals was confirmed instrumentally
using Atomic Emission Spectrometry and a Flow Injection Mercury System. The assay is rapid
and simple and can be used as a first screening method for large scale monitoring of heavy
metals.