Affiliations 

  • 1 Universiti Putra Malaysia
  • 2 UCSI University
  • 3 Kementerian Sains, Teknologi dan Inovasi
  • 4 Universiti Malaysia Perlis
MyJurnal

Abstract

The volume of contaminated rivers in Malaysia continues to keep rising through the years. The
cost of instrumental monitoring is uneconomical and prohibits schedule monitoring of
contaminants particularly heavy metals. In this work, a rapid enzyme assay utilizing the
molybdenum-reducing enzyme as an inhibitive assay, prepared in crude form from the
molybdenum-reducing bacterium Serratia sp. strain DRY5 has been developed for monitoring
the heavy metals mercury, silver, copper and chromium in contaminated waters in the Juru
Industrial Estate. The crude enzyme extract transformed soluble molybdenum
(phosphomolybdate) into a deep blue solution, which is inhibited by heavy metals such as
mercury, silver, copper and chromium. The IC50 and Limits of Detection (LOD) values for
mercury, copper, silver and cadmium were 0.245, 0.298, 0.367, 0.326, and 0.124, 0.086, 0.088
and 0.094 mg L-1, respectively. The assay is rapid, and can be carried out in less than 10 minutes.
In addition, the assay can be carried out at ambient temperature. The IC50 values for these heavy
metals are more sensitive than several established assays. Water samples from various locations
in the month of November from the Juru Industrial Estate (Penang) were tested for the presence
of heavy metals using the developed assay. Enzyme activity was nearly inhibited for water
samples from several locations. The presence of heavy metals was confirmed instrumentally
using Atomic Emission Spectrometry and a Flow Injection Mercury System. The assay is rapid
and simple and can be used as a first screening method for large scale monitoring of heavy
metals.