The two cationic palladium(ii) complexes, [Pd(Len)2][OTf]2 (4) and [Pd(Lphen)2][OTf]2 (5), were synthesized by treatment of bis(benzonitrile)dichloropalladium(ii) with [H2Len][OTf]2 (2) or [H2Lphen][OTf]2 (3), respectively, in the presence of a weak base. The pro-ligands 2 and 3 were synthesized by melt reactions between N-methyl-4-chloropyridinium triflate (1) and the amines ethylenediamine or phenylenediamine, respectively. The water-soluble compounds 2-5 were fully characterized, including by single-crystal X-ray crystal structure determinations for 2-4. UV-Vis and fluorescence spectroscopy were used to study the binding interactions of 2-5 with CT-DNA. The spectroscopic data suggested the presence of intercalative and groove binding modes and this was supported by molecular docking studies. The in vitro cytotoxicity studies (IC50 values) showed that the human breast cancer cell lines MCF-7 and T47D were more sensitive towards 3, 4 and 5 than cisplatin. The cytotoxicity of the new compounds decreased in the order 5 > 4 > 3 > 2. Furthermore, the annexin V-FITC staining method strongly suggested the presence of phosphatidylserine (PS) on the outer membrane of the treated cells, which is a hallmark of apoptosis.
The bidentate N-(1-Alkylpyridin-4(1H)-ylidene)amide (PYA) pro-ligands [H2LBn][Cl]2 (2), and [H2LMe][TfO]2 (3) were prepared by simple alkylation reactions of the known compound, N,N-di(pyridin-4-yl)oxalamide (H2L, 1). The Pd(II) complexes, [Pd(LBn)2][Cl]2 (4), [Pd(LMe)2][Cl][TfO] (5), Pd(LBn)Cl2 (6) and Pd(LMe)Cl2 (7) were synthesized through reactions between these pro-ligands and suitable Pd(II) substrates in the presence of base. The molecular structures of 3 and 6 were obtained by single crystal X-ray structure determinations. Studies of the experimental and computational DNA binding interactions of the compounds 1-7 revealed that overall 4 and 6 have the largest values for the binding parameters Kb and ΔGbo. The results showed a good correlation with the steric and electronic parameters obtained by quantitative structure activity relationship (QSAR) studies. In-vitro cytotoxicity studies against four different cell lines showed that the human breast cancer cell lines MCF-7, T47D and cervical cancer cell line HeLa had either higher or similar sensitivities towards 4, 6 and 2, respectively, compared to cisplatin. In general, the cytotoxicity of the compounds, represented by IC50 values, decreased in the order 4 > 6 > 2 > 5 > 3 > 1 > 7 in cancer cell lines. Apoptosis contributed significantly to the cytotoxic effects of these anticancer agents as evaluated by apoptosis studies.