Displaying all 2 publications

Abstract:
Sort:
  1. Gamel MMA, Ker PJ, Lee HJ, Rashid WESWA, Hannan MA, David JPR, et al.
    Sci Rep, 2021 Apr 08;11(1):7741.
    PMID: 33833263 DOI: 10.1038/s41598-021-86175-5
    The optimization of thermophotovoltaic (TPV) cell efficiency is essential since it leads to a significant increase in the output power. Typically, the optimization of In0.53Ga0.47As TPV cell has been limited to single variable such as the emitter thickness, while the effects of the variation in other design variables are assumed to be negligible. The reported efficiencies of In0.53Ga0.47As TPV cell mostly remain 
  2. Lewis HIJ, Jin X, Guo B, Lee S, Jung H, Kodati SH, et al.
    Sci Rep, 2023 Jun 19;13(1):9936.
    PMID: 37336988 DOI: 10.1038/s41598-023-36744-7
    Al0.85Ga0.15As0.56Sb0.44 has recently attracted significant research interest as a material for 1550 nm low-noise short-wave infrared (SWIR) avalanche photodiodes (APDs) due to the very wide ratio between its electron and hole ionization coefficients. This work reports new experimental excess noise data for thick Al0.85Ga0.15As0.56Sb0.44 PIN and NIP structures, measuring low noise at significantly higher multiplication values than previously reported (F = 2.2 at M = 38). These results disagree with the classical McIntyre excess noise theory, which overestimates the expected noise based on the ionization coefficients reported for this alloy. Even the addition of 'dead space' effects cannot account for these discrepancies. The only way to explain the low excess noise observed is to conclude that the spatial probability distributions for impact ionization of electrons and holes in this material follows a Weibull-Fréchet distribution function even at relatively low electric-fields. Knowledge of the ionization coefficients alone is no longer sufficient to predict the excess noise properties of this material system and consequently the electric-field dependent electron and hole ionization probability distributions are extracted for this alloy.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links