Displaying all 2 publications

Abstract:
Sort:
  1. Alhawarri MB, Al-Thiabat MG, Dubey A, Tufail A, Fouad D, Alrimawi BH, et al.
    RSC Adv, 2024 Mar 20;14(14):9878-9891.
    PMID: 38528929 DOI: 10.1039/d4ra01070a
    The current pharmacotherapies for Alzheimer's disease (AD) demonstrate limited efficacy and are associated with various side effects, highlighting the need for novel therapeutic agents. Natural products, particularly from medicinal plants, have emerged as a significant source of potential neuroprotective compounds. In this context, Cissampelos capensis L.f., renowned for its medicinal properties, has recently yielded three new proaporphine alkaloids; cissamaline, cissamanine, and cissamdine. Despite their promising bioactive profiles, the biological targets of these alkaloids in the context of AD have remained unexplored. This study undertakes a comprehensive in silico examination of the binding affinity and molecular interactions of these alkaloids with human protein targets implicated in AD. The drug likeness and ADME analyses indicate favorable pharmacokinetic profiles for these compounds, suggesting their potential efficacy in targeting the central nervous system. Molecular docking studies indicate that cissamaline, cissamanine, and cissamdine interact with key AD-associated proteins. These interactions are comparable to, or in some aspects slightly less potent than, those observed with established AD drugs, highlighting their potential as novel therapeutic agents for Alzheimer's disease. Crucially, Density Functional Theory (DFT) calculations offer deep insights into the electronic and energetic characteristics of these alkaloids. These calculations reveal distinct electronic properties, with differences in total energy, binding energy, HOMO-LUMO gaps, dipole moments, and electrophilicity indices. Such variations suggest unique reactivity profiles and molecular stability, pertinent to their pharmacological potential. Moreover, Molecular Electrostatic Potential (MEP) analyses provide visual representations of the electrostatic characteristics of these alkaloids. The analyses highlight areas prone to electrophilic and nucleophilic attacks, indicating their potential for specific biochemical interactions. This combination of DFT and MEP results elucidates the intricate electronic, energetic, and electrostatic properties of these compounds, underpinning their promise as AD therapeutic agents. The in silico findings of this study shed light on the promising potential of cissamaline, cissamanine, and cissamdine as agents for AD treatment. However, further in vitro and in vivo studies are necessary to validate these theoretical predictions and to understand the precise mechanisms through which these alkaloids may exert their therapeutic effects.
  2. Azad AK, Sulaiman WMAW, Almoustafa H, Dayoob M, Kumarasamy V, Subramaniyan V, et al.
    Data Brief, 2024 Apr;53:110202.
    PMID: 38439989 DOI: 10.1016/j.dib.2024.110202
    5-Fluorouracil (5-FU) has been the primary drug used in chemotherapy for colorectal carcinoma, and localizing the drug would be effective in avoiding its side effects and improving therapeutic outcomes. One approach to achieve this is by encapsulating the drug in microbeads. Alginate microbeads, in particular, exhibit promising pH-sensitive properties, making them an attractive option for colon targeting. Thus, the main aim of this study is to formulate and characterize 5-FU-encapsulated alginate microbeads as a pH-sensitive drug delivery system for controlled release in the gastrointestinal tract. In this study, the alginate microbeads encapsulating 5-FU was manufactured using electrospray methods. This method offers the advantages of promoting the formulation of uniformly small-sized microbeads with improved performance in terms of swelling and diffusion rates. The size and shape of the 5-FU microbeads are 394.23 ± 3.077 µm and have a spherical factor of 0.026 ± 0.022, respectively, which are considered acceptable and indicative of a spherical shape. The microbeads' encapsulation efficiency was found to be 69.65 ± 0.18%, which is considered high in comparison to other literature. The attenuated total reflectance - Fourier transform infrared spectroscopy (ATR-FTIR) data confirmed the complexation of sodium alginate with calcium ions, along with the encapsulation of 5-FU in the microbeads matrix. The 5-FU microbeads displayed pH-dependent swelling, exhibiting less swelling in simulated gastric fluid (SGF) than in simulated intestinal fluid (SIF). Additionally, the release of 5-FU from the microbeads is pH-dependent, with the cumulative percentage drug release being higher in simulated intestinal fluid than in SGF. The data indicate that the 5-FU microbeads can be utilized for the delivery of 5-FU in colon-targeted therapy, potentially leading to improved tumor treatment.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links