Displaying all 2 publications

Abstract:
Sort:
  1. Tsai MH, Muir AM, Wang WJ, Kang YN, Yang KC, Chao NH, et al.
    Neuron, 2020 Apr 22;106(2):237-245.e8.
    PMID: 32097630 DOI: 10.1016/j.neuron.2020.01.027
    Lissencephaly (LIS), denoting a "smooth brain," is characterized by the absence of normal cerebral convolutions with abnormalities of cortical thickness. Pathogenic variants in over 20 genes are associated with LIS. The majority of posterior predominant LIS is caused by pathogenic variants in LIS1 (also known as PAFAH1B1), although a significant fraction remains without a known genetic etiology. We now implicate CEP85L as an important cause of posterior predominant LIS, identifying 13 individuals with rare, heterozygous CEP85L variants, including 2 families with autosomal dominant inheritance. We show that CEP85L is a centrosome protein localizing to the pericentriolar material, and knockdown of Cep85l causes a neuronal migration defect in mice. LIS1 also localizes to the centrosome, suggesting that this organelle is key to the mechanism of posterior predominant LIS.
  2. Coppens S, Deconinck N, Sullivan P, Smolnikov A, Clayton JS, Griffin KR, et al.
    Ann Neurol, 2025 Apr;97(4):611-628.
    PMID: 39853809 DOI: 10.1002/ana.27087
    Congenital titinopathy has recently emerged as one of the most common congenital muscle disorders.

    OBJECTIVE: To better understand the presentation and clinical needs of the under-characterized extreme end of the congenital titinopathy severity spectrum.

    METHODS: We comprehensively analyzed the clinical, imaging, pathology, autopsy, and genetic findings in 15 severely affected individuals from 11 families.

    RESULTS: Prenatal features included hypokinesia or akinesia and growth restriction. Six pregnancies were terminated. Nine infants were born at or near term with severe-to-profound weakness and required resuscitation. Seven died following withdrawal of life support. Two surviving children require ongoing respiratory support. Most cohort members had at least 1 disease-causing variant predicted to result in some near-normal-length titin expression. The exceptions, from 2 unrelated families, had homozygous truncating variants predicted to induce complete nonsense mediated decay. However, subsequent analyses suggested that the causative variant in each family had an additional previously unrecognized impact on splicing likely to result in some near-normal-length titin expression. This impact was confirmed by minigene assay for 1 variant.

    INTERPRETATION: This study confirms the clinical variability of congenital titinopathy. Severely affected individuals succumb prenatally/during infancy, whereas others survive into adulthood. It is likely that this variability is because of differences in the amount and/or length of expressed titin. If confirmed, analysis of titin expression could facilitate clinical prediction and increasing expression might be an effective treatment strategy. Our findings also further-support the hypothesis that some near-normal-length titin expression is essential to early prenatal survival. Sometimes expression of normal/near-normal-length titin is due to disease-causing variants having an additional impact on splicing. ANN NEUROL 2025;97:611-628.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links