Displaying all 3 publications

Abstract:
Sort:
  1. Syaqira S SN, Leman Z, Sapuan SM, Dele-Afolabi TT, Azmah Hanim MA, S B
    Polymers (Basel), 2020 Aug 26;12(9).
    PMID: 32858857 DOI: 10.3390/polym12091923
    Natural fiber reinforced composites have had a great impact on the development of eco-friendly industrial products for several engineering applications. Sugar palm fiber (SPF) is one of the newly found natural fibers with limited experimental investigation. In the present work, sugar palm fiber was employed as the natural fiber reinforcement. The composites were hot compressed with polyvinyl butyral (PVB) to form the structure of laminated composites and then were subjected to tensile testing and moisture absorption. The maximum modulus and tensile strength of 0.84 MPa and 1.59 MPa were registered for samples PVB 80-S and PVB 70-S, respectively. Subsequently, the latter exhibited the highest tensile strain at a maximum load of 356.91%. The moisture absorption test revealed that the samples exhibited better water resistance as the proportion of PVB increased relative to the proportion of SPF due to the remarkable hydrophobic property of PVB in comparison with that of SPF.
  2. Adeleke AO, Royahu CO, Ahmad A, Dele-Afolabi TT, Alshammari MB, Imteaz M
    PLoS One, 2024;19(2):e0294286.
    PMID: 38386950 DOI: 10.1371/journal.pone.0294286
    This study highlights the effectiveness of oyster shell biocomposite for the biosorption of Cd(II) and Pb(II) ions from an aqueous solution. The aim of this work was to modify a novel biocomposite derived from oyster shell for the adsorption of Cd(II) and Pb(II) ions from aqueous solution. The studied revealed the specific surface BET surface area was 9.1476 m2/g. The elemental dispersive x-ray analysis (EDS) indicated that C, O, Ag, Ca were the predominant elements on the surface of the biocomposite after which metals ions of Cd and Pb were noticed after adsorption. The Fourier transform Irradiation (FT-IR) revealed the presence of carboxyl and hydroxyl groups on the surface. The effect of process variables on the adsorption capacity of the modified biocomposite was examined using the central composite design (CCD) of the response surface methodology (RSM). The process variables which include pH, adsorbent dose, the initial concentration and temperature were the most effective parameters influencing the uptake capacity. The optimal process conditions of these parameters were found to be pH, 5.57, adsorbent dose, 2.53 g/L, initial concentration, 46.76 mg/L and temperature 28.48°C for the biosorption of Cd(II) and Pb(II) ions from aqueous solution at a desirability coefficient of 1. The analysis of variance (ANOVA) revealed a high coefficient of determination (R2 > 0.91) and low probability coefficients for the responses (P < 0.05) which indicated the validity and aptness of the model for the biosorption of the metal ions. Experimental isotherm data fitted better to the Langmuir model and the kinetic data fitted better to the pseudo-second-order model. Maximun Cd(II) and Pb(II) adsorption capacities of the oyster shell biocomposite were 97.54 and 78.99 mg/g respectively and was obtained at pH 5.56 and 28.48°C. This investigation has provided the possibility of the utilization of alternative biocomposite as a sustainable approach for the biosorption of heavy metal ions from the wastewater stream.
  3. Sapuan SM, Aulia HS, Ilyas RA, Atiqah A, Dele-Afolabi TT, Nurazzi MN, et al.
    Polymers (Basel), 2020 Sep 27;12(10).
    PMID: 32992450 DOI: 10.3390/polym12102211
    This work represents a study to investigate the mechanical properties of longitudinal basalt/woven-glass-fiber-reinforced unsaturated polyester-resin hybrid composites. The hybridization of basalt and glass fiber enhanced the mechanical properties of hybrid composites. The unsaturated polyester resin (UP), basalt (B) and glass fibers (GF) were fabricated using the hand lay-up method in six formulations (UP, GF, B7.5/G22.5, B15/G15, B22.5/G7.5 and B) to produce the composites, respectively. This study showed that the addition of basalt to glass-fiber-reinforced unsaturated polyester resin increased its density, tensile and flexural properties. The tensile strength of the B22.5/G7.5 hybrid composites increased by 213.92 MPa compared to neat UP, which was 8.14 MPa. Scanning electron microscopy analysis was used to observe the fracture mode and fiber pullout of the hybrid composites.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links