Displaying all 2 publications

Abstract:
Sort:
  1. Sherpa S, Blum MGB, Després L
    Evolution, 2019 09;73(9):1793-1808.
    PMID: 31313825 DOI: 10.1111/evo.13801
    Adaptation to environmental conditions within the native range of exotic species can condition the invasion success of these species outside their range. The striking success of the Asian tiger mosquito, Aedes albopictus, to invade temperate regions has been attributed to the winter survival of diapause eggs in cold environments. In this study, we evaluate genetic polymorphisms (SNPs) and wing morphometric variation among three biogeographical regions of the native range of A. albopictus. Reconstructed demographic histories of populations show an initial expansion in Southeast Asia and suggest that marine regression during late Pleistocene and climate warming after the last glacial period favored expansion of populations in southern and northern regions, respectively. Searching for genomic signatures of selection, we identified significantly differentiated SNPs among which several are located in or within 20 kb distance from candidate genes for cold adaptation. These genes involve cellular and metabolic processes and several of them have been shown to be differentially expressed under diapausing conditions. The three biogeographical regions also differ for wing size and shape, and wing size increases with latitude supporting Bergmann's rule. Adaptive genetic and morphometric variation observed along the climatic gradient of A. albopictus native range suggests that colonization of northern latitudes promoted adaptation to cold environments prior to its worldwide invasion.
  2. Sherpa S, Guéguen M, Renaud J, Blum MGB, Gaude T, Laporte F, et al.
    Ecol Evol, 2019 Nov;9(22):12658-12675.
    PMID: 31788205 DOI: 10.1002/ece3.5734
    Invasive species can encounter environments different from their source populations, which may trigger rapid adaptive changes after introduction (niche shift hypothesis). To test this hypothesis, we investigated whether postintroduction evolution is correlated with contrasting environmental conditions between the European invasive and source ranges in the Asian tiger mosquito Aedes albopictus. The comparison of environmental niches occupied in European and source population ranges revealed more than 96% overlap between invasive and source niches, supporting niche conservatism. However, we found evidence for postintroduction genetic evolution by reanalyzing a published ddRADseq genomic dataset from 90 European invasive populations using genotype-environment association (GEA) methods and generalized dissimilarity modeling (GDM). Three loci, among which a putative heat-shock protein, exhibited significant allelic turnover along the gradient of winter precipitation that could be associated with ongoing range expansion. Wing morphometric traits weakly correlated with environmental gradients within Europe, but wing size differed between invasive and source populations located in different climatic areas. Niche similarities between source and invasive ranges might have facilitated the establishment of populations. Nonetheless, we found evidence for environmental-induced adaptive changes after introduction. The ability to rapidly evolve observed in invasive populations (genetic shift) together with a large proportion of unfilled potential suitable areas (80%) pave the way to further spread of Ae. albopictus in Europe.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links