Displaying all 8 publications

Abstract:
Sort:
  1. Lim HC, Rahman MA, Lim SL, Moyle RG, Sheldon FH
    Evolution, 2011 Feb;65(2):321-34.
    PMID: 20796023 DOI: 10.1111/j.1558-5646.2010.01105.x
    Sundaland, a biogeographic region of Southeast Asia, is a major biodiversity hotspot. However, little is known about the relative importance of Pleistocene habitat barriers and rivers in structuring populations and promoting diversification here. We sampled 16 lowland rainforest bird species primarily from peninsular Malaysia and Borneo to test the long-standing hypothesis that animals on different Sundaic landmasses intermixed extensively when lower sea-levels during the Last Glacial Maximum (LGM) exposed land-bridges. This hypothesis was rejected in all but five species through coalescent simulations. Furthermore, we detected a range of phylogeographic patterns; Bornean populations are often genetically distinct from each other, despite their current habitat connectivity. Environmental niche modeling showed that the presence of unsuitable habitats between western and eastern Sundaland during the LGM coincided with deeper interpopulation genetic divergences. The location of this habitat barrier had been hypothesized previously based on other evidence. Paleo-riverine barriers are unlikely to have produced such a pattern, but we cannot rule out that they acted with habitat changes to impede population exchanges across the Sunda shelf. The distinctiveness of northeastern Borneo populations may be underlied by a combination of factors such as rivers, LGM expansion of montane forests and other aspects of regional physiography.
  2. Schilthuizen M, van Til A, Salverda M, Liew TS, James SS, bin Elahan B, et al.
    Evolution, 2006 Sep;60(9):1851-8.
    PMID: 17089969
    Genetic divergence in geographically isolated populations is a prerequisite for allopatric speciation, one of the most common modes of speciation. In ecologically equivalent populations existing within a small, environmentally homogeneous area, an important role for environmentally neutral divergence is often found or inferred. We studied a species complex of conspicuously shaped Opisthostoma land snails on scattered limestone outcrops within a small area of lowland rainforest in Borneo. We used shell morphometrics, mitochondrial and nuclear DNA sequences, and marks of predation to study the factors involved in allopatric divergence. We found that a striking geographic divergence exists in shell morphology, which is partly associated with neutral genetic divergence. We also found geographic differentiation in the behavior of the snails' invertebrate predator and evidence of an evolutionary interaction between aspects of shell shape and predator behavior. Our study shows that adaptation to biotic aspects of the environment may play a more important role in allopatric speciation than previously suspected, even on a geographically very small scale.
  3. Popat R, Pollitt EJ, Harrison F, Naghra H, Hong KW, Chan KG, et al.
    Evolution, 2015 Sep;69(9):2371-83.
    PMID: 26282874 DOI: 10.1111/evo.12751
    Animals use signals to coordinate a wide range of behaviors, from feeding offspring to predator avoidance. This poses an evolutionary problem, because individuals could potentially signal dishonestly to coerce others into behaving in ways that benefit the signaler. Theory suggests that honest signaling is favored when individuals share a common interest and signals carry reliable information. Here, we exploit the opportunities offered by bacterial signaling to test these predictions with an experimental evolution approach. We show that: (1) reduced relatedness leads to the relative breakdown of signaling, (2) signaling breaks down by the invasion of mutants that show both reduced signaling and reduced response to signal, (3) the genetic route to signaling breakdown is variable, and (4) the addition of artificial signal, to interfere with signal information, also leads to reduced signaling. Our results provide clear support for signaling theory, but we did not find evidence for previously predicted coercion at intermediate relatedness, suggesting that mechanistic details can alter the qualitative nature of specific predictions. Furthermore, populations evolved under low relatedness caused less mortality to insect hosts, showing how signal evolution in bacterial pathogens can drive the evolution of virulence in the opposite direction to that often predicted by theory.
  4. Fleischer RC, Perry EA, Muralidharan K, Stevens EE, Wemmer CM
    Evolution, 2001 Sep;55(9):1882-92.
    PMID: 11681743
    Populations of the Asian elephant (Elephas maximus) have been reduced in size and become highly fragmented during the past 3,000 to 4,000 years. Historical records reveal elephant dispersal by humans via trade and war. How have these anthropogenic impacts affected genetic variation and structure of Asian elephant populations? We sequenced mitochondrial DNA (mtDNA) to assay genetic variation and phylogeography across much of the Asian elephant's range. Initially we compare cytochrome b sequences (cyt b) between nine Asian and five African elephants and use the fossil-based age of their separation (approximately 5 million years ago) to obtain a rate of about 0.013 (95% CI = 0.011-0.018) corrected sequence divergence per million years. We also assess variation in part of the mtDNA control region (CR) and adjacent tRNA genes in 57 Asian elephants from seven countries (Sri Lanka, India, Nepal, Myanmar, Thailand, Malaysia, and Indonesia). Asian elephants have typical levels of mtDNA variation, and coalescence analyses suggest their populations were growing in the late Pleistocene. Reconstructed phylogenies reveal two major clades (A and B) differing on average by HKY85/gamma-corrected distances of 0.020 for cyt b and 0.050 for the CR segment (corresponding to a coalescence time based on our cyt b rate of approximately 1.2 million years). Individuals of both major clades exist in all locations but Indonesia and Malaysia. Most elephants from Malaysia and all from Indonesia are in well-supported, basal clades within clade A. thus supporting their status as evolutionarily significant units (ESUs). The proportion of clade A individuals decreases to the north, which could result from retention and subsequent loss of ancient lineages in long-term stable populations or, perhaps more likely, via recent mixing of two expanding populations that were isolated in the mid-Pleistocene. The distribution of clade A individuals appears to have been impacted by human trade in elephants among Myanmar, Sri Lanka, and India, and the subspecies and ESU statuses of Sri Lankan elephants are not supported by molecular data.
  5. Quek SP, Davies SJ, Itino T, Pierce NE
    Evolution, 2004 Mar;58(3):554-70.
    PMID: 15119439
    We investigate the evolution of host association in a cryptic complex of mutualistic Crematogaster (Decacrema) ants that inhabits and defends Macaranga trees in Southeast Asia. Previous phylogenetic studies based on limited samplings of Decacrema present conflicting reconstructions of the evolutionary history of the association, inferring both cospeciation and the predominance of host shifts. We use cytochrome oxidase I (COI) to reconstruct phylogenetic relationships in a comprehensive sampling of the Decacrema inhabitants of Macaranga. Using a published Macaranga phylogeny, we test whether the ants and plants have cospeciated. The COI phylogeny reveals 10 well-supported lineages and an absence of cospeciation. Host shifts, however, have been constrained by stem traits that are themselves correlated with Macaranga phylogeny. Earlier lineages of Decacrema exclusively inhabit waxy stems, a basal state in the Pachystemon clade within Macaranga, whereas younger species of Pachystemon, characterized by nonwaxy stems, are inhabited only by younger lineages of Decacrema. Despite the absence of cospeciation, the correlated succession of stem texture in both phylogenies suggests that Decacrema and Pachystemon have diversified in association, or codiversified. Subsequent to the colonization of the Pachystemon clade, Decacrema expanded onto a second clade within Macaranga, inducing the development of myrmecophytism in the Pruinosae group. Confinement to the aseasonal wet climate zone of western Malesia suggests myrmecophytic Macaranga are no older than the wet forest community in Southeast Asia, estimated to be about 20 million years old (early Miocene). Our calculation of COI divergence rates from several published arthropod studies that relied on tenable calibrations indicates a generally conserved rate of approximately 1.5% per million years. Applying this rate to a rate-smoothed Bayesian chronogram of the ants, the Decacrema from Macaranga are inferred to be at least 12 million years old (mid-Miocene). However, using the extremes of rate variation in COI produces an age as recent as 6 million years. Our inferred timeline based on 1.5% per million years concurs with independent biogeographical events in the region reconstructed from palynological data, thus suggesting that the evolutionary histories of Decacrema and their Pachystemon hosts have been contemporaneous since the mid-Miocene. The evolution of myrmecophytism enabled Macaranga to radiate into enemy-free space, while the ants' diversification has been shaped by stem traits, host specialization, and geographic factors. We discuss the possibility that the ancient and exclusive association between Decacrema and Macaranga was facilitated by an impoverished diversity of myrmecophytes and phytoecious (obligately plant inhabiting) ants in the region.
  6. Sherpa S, Blum MGB, Després L
    Evolution, 2019 09;73(9):1793-1808.
    PMID: 31313825 DOI: 10.1111/evo.13801
    Adaptation to environmental conditions within the native range of exotic species can condition the invasion success of these species outside their range. The striking success of the Asian tiger mosquito, Aedes albopictus, to invade temperate regions has been attributed to the winter survival of diapause eggs in cold environments. In this study, we evaluate genetic polymorphisms (SNPs) and wing morphometric variation among three biogeographical regions of the native range of A. albopictus. Reconstructed demographic histories of populations show an initial expansion in Southeast Asia and suggest that marine regression during late Pleistocene and climate warming after the last glacial period favored expansion of populations in southern and northern regions, respectively. Searching for genomic signatures of selection, we identified significantly differentiated SNPs among which several are located in or within 20 kb distance from candidate genes for cold adaptation. These genes involve cellular and metabolic processes and several of them have been shown to be differentially expressed under diapausing conditions. The three biogeographical regions also differ for wing size and shape, and wing size increases with latitude supporting Bergmann's rule. Adaptive genetic and morphometric variation observed along the climatic gradient of A. albopictus native range suggests that colonization of northern latitudes promoted adaptation to cold environments prior to its worldwide invasion.
  7. Ord TJ, Diesmos A, Ahmad N, Das I
    Evolution, 2023 Mar 01;77(3):660-669.
    PMID: 36626820 DOI: 10.1093/evolut/qpac057
    We identified hypotheses for the cause and consequences of the loss of complexity in animal signals and tested these using a genus of visually communicating lizards, the Southeast Asian Draco lizards. Males of some species have lost the headbob component from their display, which is otherwise central to the communication of this genus. These males instead display a large, colorful dewlap to defend territories and attract mates. This dewlap initially evolved to augment the headbob component of the display, but has become the exclusive system of communication. We tested whether the loss of headbobs was caused by relaxed selection, habitat-dependent constraints, or size-specific energetic constraints on display movement. We then examined whether the consequences of this loss have been mitigated by increased signaling effort or complexity in the color of the dewlap. It appears the increased cost of display movement resulting from the evolution of large body size might have contributed to the loss of headbobs and has been somewhat compensated for by the evolution of greater complexity in dewlap color. However, this evolutionary shift is unlikely to have maintained the complexity previously present in the communication system, resulting in an apparent detrimental loss of information potential.
  8. Broyles GG, Myers BM, Friedman NR, Gawin DF, Mohd-Taib FS, Sahlan PGM, et al.
    Evolution, 2023 Dec 02;77(12):2656-2671.
    PMID: 37801637 DOI: 10.1093/evolut/qpad179
    The causes of population divergence in vagile groups remain a paradox in evolutionary biology: dispersive species should be able to colonize new areas, a prerequisite for allopatric speciation, but dispersal also facilitates gene flow, which erodes population differentiation. Strong dispersal ability has been suggested to enhance divergence in patchy habitats and inhibit divergence in continuous landscapes, but empirical support for this hypothesis is lacking. Here we compared patterns of population divergence in a dispersive clade of swallows distributed across both patchy and continuous habitats. The Pacific Swallow (Hirundo tahitica) has an insular distribution throughout Southeast Asia and the Pacific, while its sister species, the Welcome Swallow (H. neoxena), has a continental distribution in Australia. We used whole-genome data to demonstrate strong genetic structure and limited introgression among insular populations, but not among continental populations. Demographic models show that historic changes in habitat connectivity have contributed to population structure within the clade. Swallows appear to exhibit evolutionarily labile dispersal behavior in which they reduce dispersal propensity after island colonization despite retaining strong flight ability. Our data support the hypothesis that fragmented habitats enhance population differentiation in vagile groups, and suggest that labile dispersal behavior is a key mechanism underlying this pattern.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links