Displaying all 2 publications

Abstract:
Sort:
  1. Singh BB, Dhand NK, Cadmus S, Dean AS, Merle CS
    Front Public Health, 2024;12:1345328.
    PMID: 39165781 DOI: 10.3389/fpubh.2024.1345328
    INTRODUCTION: Tuberculosis (TB) remains a leading cause of mortality worldwide. We conducted this systematic review to understand the distribution of bovine and zoonotic tuberculosis in the World Health Organization (WHO)'s Southeast Asia Region (SEAR) and Western Pacific Region (WPR) to inform our understanding of the risk posed by this disease.

    METHODS: A two-pronged strategy was used by evaluating data from peer-reviewed literature and official reports. A systematic search was conducted using a structured query in four databases (Web of Science, Scopus, Medline, and PubMed) to identify any reports of the occurrence of zoonotic TB. No language and time constraints were used during the search, but non-English language articles were later excluded. The official data were sourced from the World Organization for Animal Health's (WOAH) World Animal Health Information System (WAHIS) and WHO's global TB database.

    RESULTS: The retrieved records from SEAR and WPR (n = 113) were screened for eligibility, and data about disease occurrence were extracted and tabulated. In SEAR, all of the five studies that conducted Mycobacterium speciation (5/6) in humans were from India, and the reported Mycobacterium species included M. tuberculosis, M. bovis, M. scrofulacium, M. kansasii, M. phlei, M. smegmatis and M. orygis. In WPR, Mycobacterium speciation investigations in humans were conducted in Australia (8), China (2), Japan (2), NewZealand (2) and Malaysia (1), and the reported Mycobacterium species included M. bovis, M. africanum and M. tuberculosis. Seven countries in WHO's SEAR have officially reported the occurrence of Mycobacterium bovis in their animals: Bangladesh, India, Indonesia, Myanmar, Nepal, Sri Lanka and Thailand. In WPR, the WAHIS information system includes reports of the identification of M. bovis from 11 countries - China, Fiji, Japan, Malaysia, Mongolia, New Zealand, the Philippines, the Republic of Korea, Singapore, Tonga and Viet Nam. In contrast, human zoonotic TB cases in the WHO database were only listed from Australia, Brunei Darussalam and Palau countries.

    DISCUSSION: The available data suggests under-reporting of zoonotic TB in the regions. Efforts are required to strengthen zoonotic TB surveillance systems from both animal and human health sides to better understand the impact of zoonotic TB in order to take appropriate action to achieve the goal of ending the TB epidemic.

  2. Atherstone C, Diederich S, Weingartl HM, Fischer K, Balkema-Buschmann A, Grace D, et al.
    Transbound Emerg Dis, 2019 Mar;66(2):921-928.
    PMID: 30576076 DOI: 10.1111/tbed.13105
    Hendra virus (HeV) and Nipah virus (NiV), belonging to the genus Henipavirus, are among the most pathogenic of viruses in humans. Old World fruit bats (family Pteropodidae) are the natural reservoir hosts. Molecular and serological studies found evidence of henipavirus infection in fruit bats from several African countries. However, little is known about the potential for spillover into domestic animals in East Africa, particularly pigs, which served as amplifying hosts during the first outbreak of NiV in Malaysia and Singapore. We collected sera from 661 pigs presented for slaughter in Uganda between December 2015 and October 2016. Using HeV G and NiV G indirect ELISAs, 14 pigs (2%) were seroreactive in at least one ELISA. Seroprevalence increased to 5.4% in October 2016, when pigs were 9.5 times more likely to be seroreactive than pigs sampled in December 2015 (p = 0.04). Eight of the 14 ELISA-positive samples reacted with HeV N antigen in Western blot. None of the sera neutralized HeV or NiV in plaque reduction neutralization tests. Although we did not detect neutralizing antibodies, our results suggest that pigs in Uganda are exposed to henipaviruses or henipa-like viruses. Pigs in this study were sourced from many farms throughout Uganda, suggesting multiple (albeit rare) introductions of henipaviruses into the pig population. We postulate that given the widespread distribution of Old World fruit bats in Africa, spillover of henipaviruses from fruit bats to pigs in Uganda could result in exposure of pigs at multiple locations. A higher risk of a spillover event at the end of the dry season might be explained by higher densities of bats and contact with pigs at this time of the year, exacerbated by nutritional stress in bat populations and their reproductive cycle. Future studies should prioritize determining the risk of spillover of henipaviruses from pigs to people, so that potential risks can be mitigated.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links