Sexual ornamentation needs to be conspicuous to be effective in attracting potential mates and defending territories and indeed, a multitude of ways exists to achieve this. Two principal mechanisms for increasing conspicuousness are to increase the ornament's colour or brightness contrast against the background and to increase the size of the ornament. We assessed the relationship between the colour and size of the dewlap, a large extendible throat-fan, across a range of species of gliding lizards (Agamidae; genus Draco) from Malaysia and the Philippines. We found a negative relationship across species between colour contrast against the background and dewlap size in males, but not in females, suggesting that males of different species use increasing colour contrast and dewlap size as alternative strategies for effective communication. Male dewlap size also increases with increasing sexual size dimorphism, and dewlap colour and brightness contrast increase with increasing sexual dichromatism in colour and brightness, respectively, suggesting that sexual selection may act on both dewlap size and colour. We further found evidence that relative predation intensity, as measured from predator attacks on models placed in the field, may play a role in the choice of strategy (high chromatic contrast or large dewlap area) a species employs. More broadly, these results highlight that each component in a signal (such as colour or size) may be influenced by different selection pressures and that by assessing components individually, we can gain a greater understanding of the evolution of signal diversity.
We identified hypotheses for the cause and consequences of the loss of complexity in animal signals and tested these using a genus of visually communicating lizards, the Southeast Asian Draco lizards. Males of some species have lost the headbob component from their display, which is otherwise central to the communication of this genus. These males instead display a large, colorful dewlap to defend territories and attract mates. This dewlap initially evolved to augment the headbob component of the display, but has become the exclusive system of communication. We tested whether the loss of headbobs was caused by relaxed selection, habitat-dependent constraints, or size-specific energetic constraints on display movement. We then examined whether the consequences of this loss have been mitigated by increased signaling effort or complexity in the color of the dewlap. It appears the increased cost of display movement resulting from the evolution of large body size might have contributed to the loss of headbobs and has been somewhat compensated for by the evolution of greater complexity in dewlap color. However, this evolutionary shift is unlikely to have maintained the complexity previously present in the communication system, resulting in an apparent detrimental loss of information potential.
Convergence in communication appears rare compared with other forms of adaptation. This is puzzling, given communication is acutely dependent on the environment and expected to converge in form when animals communicate in similar habitats. We uncover deep-time convergence in territorial communication between two groups of tropical lizards separated by over 140 million years of evolution: the Southeast Asian Draco and Caribbean Anolis. These groups have repeatedly converged in multiple aspects of display along common environmental gradients. Robot playbacks to free-ranging lizards confirmed that the most prominent convergence in display is adaptive, as it improves signal detection. We then provide evidence from a sample of the literature to further show that convergent adaptation among highly divergent animal groups is almost certainly widespread in nature. Signal evolution is therefore curbed towards the same set of adaptive solutions, especially when animals are challenged with the problem of communicating effectively in noisy environments.