Displaying all 9 publications

Abstract:
Sort:
  1. Ng CH, Lee SL, Tnah LH, Ng KKS, Lee CT, Diway B, et al.
    J Hered, 2019 12 17;110(7):844-856.
    PMID: 31554011 DOI: 10.1093/jhered/esz052
    Southeast Asian rainforests at upper hill elevations are increasingly vulnerable to degradation because most lowland forest areas have been converted to different land uses. As such, understanding the genetics of upper hill species is becoming more crucial for their future management and conservation. Shorea platyclados is an important, widespread upper hill dipterocarp in Malaysia. To elucidate the genetic structure of S. platyclados and ultimately provide guidelines for a conservation strategy for this species, we carried out a comprehensive study of the genetic diversity and demographic history of S. platyclados. Twenty-seven populations of S. platyclados across its range in Malaysia were genotyped at 15 polymorphic microsatellite loci and sequenced at seven noncoding chloroplast DNA (cpDNA) regions. A total of 303 alleles were derived from the microsatellite loci, and 29 haplotypes were identified based on 2892 bp of concatenated cpDNA sequences. The populations showed moderately high genetic diversity (mean HE = 0.680 for microsatellite gene diversity and HT = 0.650 for total haplotype diversity) and low genetic differentiation (FST = 0.060). Bayesian clustering divided the studied populations into two groups corresponding to western and eastern Malaysia. Bottleneck analysis did not detect any recent bottleneck events. Extended Bayesian skyline analyses showed a model of constant size for the past population history of this species. Based on our findings, priority areas for in situ and ex situ conservation and a minimum population size are recommended for the sustainable utilization of S. platyclados.
  2. Ng CH, Lee SL, Tnah LH, Ng KKS, Lee CT, Diway B, et al.
    PLoS One, 2017;12(4):e0176158.
    PMID: 28430826 DOI: 10.1371/journal.pone.0176158
    The development of timber tracking methods based on genetic markers can provide scientific evidence to verify the origin of timber products and fulfill the growing requirement for sustainable forestry practices. In this study, the origin of an important Dark Red Meranti wood, Shorea platyclados, was studied by using the combination of seven chloroplast DNA and 15 short tandem repeats (STRs) markers. A total of 27 natural populations of S. platyclados were sampled throughout Malaysia to establish population level and individual level identification databases. A haplotype map was generated from chloroplast DNA sequencing for population identification, resulting in 29 multilocus haplotypes, based on 39 informative intraspecific variable sites. Subsequently, a DNA profiling database was developed from 15 STRs allowing for individual identification in Malaysia. Cluster analysis divided the 27 populations into two genetic clusters, corresponding to the region of Eastern and Western Malaysia. The conservativeness tests showed that the Malaysia database is conservative after removal of bias from population subdivision and sampling effects. Independent self-assignment tests correctly assigned individuals to the database in an overall 60.60-94.95% of cases for identified populations, and in 98.99-99.23% of cases for identified regions. Both the chloroplast DNA database and the STRs appear to be useful for tracking timber originating in Malaysia. Hence, this DNA-based method could serve as an effective addition tool to the existing forensic timber identification system for ensuring the sustainably management of this species into the future.
  3. Takeuchi Y, Soda R, Diway B, Kuda TA, Nakagawa M, Nagamasu H, et al.
    PLoS One, 2017;12(11):e0187273.
    PMID: 29186138 DOI: 10.1371/journal.pone.0187273
    This study explored the conservation values of communally reserved forests (CRFs), which local indigenous communities deliberately preserve within their area of shifting cultivation. In the current landscape of rural Borneo, CRFs are the only option for conservation because other forested areas have already been logged or transformed into plantations. By analyzing their alpha and beta diversity, we investigated how these forests can contribute to restore regional biodiversity. Although CRFs were fragmented and some had been disturbed in the past, their tree species diversity was high and equivalent to that of primary forests. The species composition of intact forests and forests disturbed in the past did not differ clearly, which indicates that past logging was not intensive. All CRFs contained unique and endangered species, which are on the IUCN Red List, Sarawak protected plants, or both. On the other hand, the forest size structure differed between disturbed and intact CRFs, with the disturbed CRFs consisting of relatively smaller trees. Although the beta diversity among CRFs was also high, we found a high contribution of species replacement (turnover), but not of richness difference, in the total beta diversity. This suggests that all CRFs have a conservation value for restoring the overall regional biodiversity. Therefore, for maintaining the regional species diversity and endangered species, it would be suitable to design a conservation target into all CRFs.
  4. Miyashita NT, Iwanaga H, Charles S, Diway B, Sabang J, Chong L
    Genes Genet Syst, 2013;88(2):93-103.
    PMID: 23832301
    Bacterial community structure was investigated in five tropical rainforests in Sarawak, Malaysia and one temperate forest in Kyoto, Japan. A hierarchical sampling approach was employed, in which soil samples were collected from five sampling-sites within each forest. Pyrosequencing was performed to analyze a total of 493,790 16S rRNA amplicons. Despite differences in aboveground conditions, the composition of bacterial groups was similar across all sampling-sites and forests, with Acidobacteria, Proteobacteria, Verrucomicrobia, Planctomycetes and Bacteroidetes accounting for 90% of all Phyla detected. At higher taxonomic levels, the same taxa were predominant, although there was significant heterogeneity in relative abundance of specific taxa across sampling-sites within one forest or across different forests. In all forests, the level of bacterial diversity, estimated using the Chao1 index, was on the order of 1,000, suggesting that tropical rainforests did not necessarily have a large soil bacterial diversity. The average number of reads per species (OTUs) per sampling-site was 8.0, and more than 40-50% of species were singletons, indicating that most bacterial species occurred infrequently and that few bacterial species achieved high predominance. Approximately 30% of species were specific to one sampling-site within a forest, and 40-60% of species were uniquely detected in one of the six forests studied here. Only 0.2% of species were detected in all forests, while on average 32.1% of species were detected in all sampling-sites within a forest. The results suggested that bacterial communities adapted to specific micro- and macro-environments, but macro-environmental diversity made a larger contribution to total bacterial diversity in forest soil.
  5. Smulders MJ, VAN 't Westende WP, Diway B, Esselink GD, VAN DER Meer PJ, Koopman WJ
    Mol Ecol Resour, 2008 Jan;8(1):168-71.
    PMID: 21585747 DOI: 10.1111/j.1471-8286.2007.01914.x
    Ten polymorphic microsatellite markers have been developed for Gonystylus bancanus (Ramin), a protected tree species of peat swamp forests in Malaysia and Indonesia. Eight markers were also shown to be polymorphic in other Gonystylus species. The markers will enable assessing the amount of genetic variation within and among populations and the degree of population differentiation, such that donor populations can be selected for reforestation projects. They may be used for tracing and tracking of wood in the production chain, so that legal trade in this Convention on International Trade in Endangered Species of Wild Fauna and Flora-protected timber species, derived from specifically described origins, can be distinguished from illegally logged timber.
  6. Takeuchi Y, Chaffron S, Salcher MM, Shimizu-Inatsugi R, Kobayashi MJ, Diway B, et al.
    Syst Appl Microbiol, 2015 Jul;38(5):330-9.
    PMID: 26138047 DOI: 10.1016/j.syapm.2015.05.006
    Pitchers are modified leaves used by carnivorous plants for trapping prey. Their fluids contain digestive enzymes from the plant and they harbor abundant microbes. In this study, the diversity of bacterial communities was assessed in Nepenthes pitcher fluids and the composition of the bacterial community was compared to that in other environments, including the phyllosphere of Arabidopsis, animal guts and another pitcher plant, Sarracenia. Diversity was measured by 454 pyrosequencing of 16S rRNA gene amplicons. A total of 232,823 sequences were obtained after chimera and singleton removal that clustered into 3260 distinct operational taxonomic units (OTUs) (3% dissimilarity), which were taxonomically distributed over 17 phyla, 25 classes, 45 orders, 100 families, and 195 genera. Pyrosequencing and fluorescence in situ hybridization yielded similar estimates of community composition. Most pitchers contained high proportions of unique OTUs, and only 22 OTUs (<0.6%) were shared by ≥14/16 samples, suggesting a unique bacterial assemblage in each pitcher at the OTU level. Diversity analysis at the class level revealed that the bacterial communities of both opened and unopened pitchers were most similar to that of Sarracenia and to that in the phyllosphere. Therefore, the bacterial community in pitchers may be formed by environmental filtering and/or by phyllosphere bacteria.
  7. Ohtani M, Kondo T, Tani N, Ueno S, Lee LS, Ng KK, et al.
    Mol Ecol, 2013 Apr;22(8):2264-79.
    PMID: 23432376 DOI: 10.1111/mec.12243
    Tropical rainforests in South-East Asia have been affected by climatic fluctuations during past glacial eras. To examine how the accompanying changes in land areas and temperature have affected the genetic properties of rainforest trees in the region, we investigated the phylogeographic patterns of a widespread dipterocarp species, Shorea leprosula. Two types of DNA markers were used: expressed sequence tag-based simple sequence repeats and chloroplast DNA (cpDNA) sequence variations. Both sets of markers revealed clear genetic differentiation between populations in Borneo and those in the Malay Peninsula and Sumatra (Malay/Sumatra). However, in the south-western part of Borneo, genetic admixture of the lineages was observed in the two marker types. Coalescent simulation based on cpDNA sequence variation suggested that the two lineages arose 0.28-0.09 million years before present and that following their divergence migration from Malay/Sumatra to Borneo strongly exceeded migration in the opposite direction. We conclude that the genetic structure of S. leprosula was largely formed during the middle Pleistocene and was subsequently modified by eastward migration across the subaerially exposed Sunda Shelf.
  8. Ng KKS, Lee SL, Tnah LH, Nurul-Farhanah Z, Ng CH, Lee CT, et al.
    Forensic Sci Int Genet, 2016 07;23:197-209.
    PMID: 27213560 DOI: 10.1016/j.fsigen.2016.05.002
    Illegal logging and smuggling of Gonystylus bancanus (Thymelaeaceae) poses a serious threat to this fragile valuable peat swamp timber species. Using G. bancanus as a case study, DNA markers were used to develop identification databases at the species, population and individual level. The species level database for Gonystylus comprised of an rDNA (ITS2) and two cpDNA (trnH-psbA and trnL) markers based on a 20 Gonystylus species database. When concatenated, taxonomic species recognition was achieved with a resolution of 90% (18 out of the 20 species). In addition, based on 17 natural populations of G. bancanus throughout West (Peninsular Malaysia) and East (Sabah and Sarawak) Malaysia, population and individual identification databases were developed using cpDNA and STR markers respectively. A haplotype distribution map for Malaysia was generated using six cpDNA markers, resulting in 12 unique multilocus haplotypes, from 24 informative intraspecific variable sites. These unique haplotypes suggest a clear genetic structuring of West and East regions. A simulation procedure based on the composition of the samples was used to test whether a suspected sample conformed to a given regional origin. Overall, the observed type I and II errors of the databases showed good concordance with the predicted 5% threshold which indicates that the databases were useful in revealing provenance and establishing conformity of samples from West and East Malaysia. Sixteen STRs were used to develop the DNA profiling databases for individual identification. Bayesian clustering analyses divided the 17 populations into two main genetic clusters, corresponding to the regions of West and East Malaysia. Population substructuring (K=2) was observed within each region. After removal of bias resulting from sampling effects and population subdivision, conservativeness tests showed that the West and East Malaysia databases were conservative. This suggests that both databases can be used independently for random match probability estimation within respective regions. The reliability of the databases was further determined by independent self-assignment tests based on the likelihood of each individual's multilocus genotype occurring in each identified population, genetic cluster and region with an average percentage of correctly assigned individuals of 54.80%, 99.60% and 100% respectively. Thus, after appropriate validation, the genetic identification databases developed for G. bancanus in this study could support forensic applications and help safeguard this valuable species into the future.
  9. Ito N, Iwanaga H, Charles S, Diway B, Sabang J, Chong L, et al.
    Genes Genet Syst, 2017 Sep 12;92(1):1-20.
    PMID: 28003572 DOI: 10.1266/ggs.16-00013
    Geographical variation in soil bacterial community structure in 26 tropical forests in Southeast Asia (Malaysia, Indonesia and Singapore) and two temperate forests in Japan was investigated to elucidate the environmental factors and mechanisms that influence biogeography of soil bacterial diversity and composition. Despite substantial environmental differences, bacterial phyla were represented in similar proportions, with Acidobacteria and Proteobacteria the dominant phyla in all forests except one mangrove forest in Sarawak, although highly significant heterogeneity in frequency of individual phyla was detected among forests. In contrast, species diversity (α-diversity) differed to a much greater extent, being nearly six-fold higher in the mangrove forest (Chao1 index = 6,862) than in forests in Singapore and Sarawak (~1,250). In addition, natural mixed dipterocarp forests had lower species diversity than acacia and oil palm plantations, indicating that aboveground tree composition does not influence soil bacterial diversity. Shannon and Chao1 indices were correlated positively, implying that skewed operational taxonomic unit (OTU) distribution was associated with the abundance of overall and rare (singleton) OTUs. No OTUs were represented in all 28 forests, and forest-specific OTUs accounted for over 70% of all detected OTUs. Forests that were geographically adjacent and/or of the same forest type had similar bacterial species composition, and a positive correlation was detected between species divergence (β-diversity) and direct distance between forests. Both α- and β-diversities were correlated with soil pH. These results suggest that soil bacterial communities in different forests evolve largely independently of each other and that soil bacterial communities adapt to their local environment, modulated by bacterial dispersal (distance effect) and forest type. Therefore, we conclude that the biogeography of soil bacteria communities described here is non-random, reflecting the influences of contemporary environmental factors and evolutionary history.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links