Driver drowsiness is a major cause of fatal accidents, injury, and property damage, and has become an area of substantial research attention in recent years. The present study proposes a method to detect drowsiness in drivers which integrates features of electrocardiography (ECG) and electroencephalography (EEG) to improve detection performance. The study measures differences between the alert and drowsy states from physiological data collected from 22 healthy subjects in a driving simulator-based study. A monotonous driving environment is used to induce drowsiness in the participants. Various time and frequency domain feature were extracted from EEG including time domain statistical descriptors, complexity measures and power spectral measures. Features extracted from the ECG signal included heart rate (HR) and heart rate variability (HRV), including low frequency (LF), high frequency (HF) and LF/HF ratio. Furthermore, subjective sleepiness scale is also assessed to study its relationship with drowsiness. We used paired t-tests to select only statistically significant features (p < 0.05), that can differentiate between the alert and drowsy states effectively. Significant features of both modalities (EEG and ECG) are then combined to investigate the improvement in performance using support vector machine (SVM) classifier. The other main contribution of this paper is the study on channel reduction and its impact to the performance of detection. The proposed method demonstrated that combining EEG and ECG has improved the system's performance in discriminating between alert and drowsy states, instead of using them alone. Our channel reduction analysis revealed that an acceptable level of accuracy (80%) could be achieved by combining just two electrodes (one EEG and one ECG), indicating the feasibility of a system with improved wearability compared with existing systems involving many electrodes. Overall, our results demonstrate that the proposed method can be a viable solution for a practical driver drowsiness system that is both accurate and comfortable to wear.
The bi-directional information transfer in optical body area networks (OBANs) is crucial at all the three tiers of communication, i.e., intra-, inter-, and beyond-BAN communication, which correspond to tier-I, tier-II, and tier-III, respectively. However, the provision of uninterrupted uplink (UL) and downlink (DL) connections at tier II (inter-BAN) are extremely critical, since these links serve as a bridge between tier-I (intra-BAN) and tier-III (beyond-BAN) communication. Any negligence at this level could be life-threatening; therefore, enabling quality-of-service (QoS) remains a fundamental design issue at tier-II. Consequently, to provide QoS, a key parameter is to ensure link reliability and communication quality by maintaining a nearly uniform signal-to-noise ratio (SNR) within the coverage area. Several studies have reported the effects of transceiver related parameters on OBAN link performance, nevertheless the implications of changing transmitter locations on the SNR uniformity and communication quality have not been addressed. In this work, we undertake a DL scenario and analyze how the placement of light-emitting diode (LED) lamps can improve the SNR uniformity, regardless of the receiver position. Subsequently, we show that using the principle of reciprocity (POR) and with transmitter-receiver positions switched, the analysis is also applicable to UL, provided that the optical channel remains linear. Moreover, we propose a generalized optimal placement scheme along with a heuristic design formula to achieve uniform SNR and illuminance for DL using a fixed number of transmitters and compare it with an existing technique. The study reveals that the proposed placement technique reduces the fluctuations in SNR by 54% and improves the illuminance uniformity up to 102% as compared to the traditional approach. Finally, we show that, for very low luminous intensity, the SNR values remain sufficient to maintain a minimum bit error rate (BER) of 10-9 with on-off keying non-return-to-zero (OOK-NRZ) modulation format.
The fabrication of lightweight, ultra-thin, low power and intelligent body-borne sensors leads to novel advances in wireless body area networks (WBANs). Depending on the placement of the nodes, it is characterized as in/on body WBAN; thus, the channel is largely affected by body posture, clothing, muscle movement, body temperature and climatic conditions. The energy resources are limited and it is not feasible to replace the sensor's battery frequently. In order to keep the sensor in working condition, the channel resources should be reserved. The lifetime of the sensor is very crucial and it highly depends on transmission among sensor nodes and energy consumption. The reliability and energy efficiency in WBAN applications play a vital role. In this paper, the analytical expressions for energy efficiency (EE) and packet error rate (PER) are formulated for two-way relay cooperative communication. The results depict better reliability and efficiency compared to direct and one-way relay communication. The effective performance range of direct vs. cooperative communication is separated by a threshold distance. Based on EE calculations, an optimal packet size is observed that provides maximum efficiency over a certain link length. A smart and energy efficient system is articulated that utilizes all three communication modes, namely direct, one-way relay and two-way relay, as the direct link performs better for a certain range, but the cooperative communication gives better results for increased distance in terms of EE. The efficacy of the proposed hybrid scheme is also demonstrated over a practical quasi-static channel. Furthermore, link length extension and diversity is achieved by joint network-channel (JNC) coding the cooperative link.