Displaying all 2 publications

Abstract:
Sort:
  1. Malashenkova IK, Krynskiy SA, Ogurtsov DP, Khailov NA, Druzhinina PV, Bernstein AV, et al.
    Sovrem Tekhnologii Med, 2023;15(6):5-12.
    PMID: 39944368 DOI: 10.17691/stm2023.15.6.01
    Disorders of systemic immunity and immune processes in the brain have now been shown to play an essential role in the development and progression of schizophrenia. Nevertheless, only a few works were devoted to the study of some immune parameters to objectify the diagnosis by means of machine learning. At the same time, machine learning methods have not yet been applied to a set of data fully reflecting systemic characteristics of the immune status (parameters of adaptive immunity, the level of inflammatory markers, the content of major cytokines). Considering a complex nature of immune system disorders in schizophrenia, incorporation of a broad panel of immunological data into machine learning models is promising for improving classification accuracy and identifying the parameters reflecting the immune disorders typical for the majority of patients. The aim of the study is to assess the possibility of using immunological parameters to objectify the diagnosis of schizophrenia applying machine learning models.

    MATERIALS AND METHODS: We have analyzed 17 immunological parameters in 63 schizophrenia patients and 36 healthy volunteers. The parameters of humoral immunity, systemic level of the key cytokines of adaptive immunity, anti-inflammatory and pro-inflammatory cytokines, and other inflammatory markers were determined by enzyme immunoassay. Applied methods of machine learning covered the main group of approaches to supervised learning such as linear models (logistic regression), quadratic discriminant analysis (QDA), support vector machine (linear SVM, RBF SVM), k-nearest neighbors algorithm, Gaussian processes, naive Bayes classifier, decision trees, and ensemble models (AdaBoost, random forest, XGBoost). The importance of features for prediction from the best fold has been analyzed for the machine learning methods, which demonstrated the best quality. The most significant features were selected using 70% quantile threshold.

    RESULTS: The AdaBoost ensemble model with ROC AUC of 0.71±0.15 and average accuracy (ACC) of 0.78±0.11 has demonstrated the best quality on a 10-fold cross validation test sample. Within the frameworks of the present investigation, the AdaBoost model has shown a good quality of classification between the patients with schizophrenia and healthy volunteers (ROC AUC over 0.70) at a high stability of the results (σ less than 0.2). The most important immunological parameters have been established for differentiation between the patients and healthy volunteers: the level of some systemic inflammatory markers, activation of humoral immunity, pro-inflammatory cytokines, immunoregulatory cytokines and proteins, Th1 and Th2 immunity cytokines. It was for the first time that the possibility of differentiating schizophrenia patients from healthy volunteers was shown with the accuracy of more than 70% with the help of machine learning using only immune parameters.The results of this investigation confirm a high importance of the immune system in the pathogenesis of schizophrenia.

  2. Sharaev MG, Malashenkova IK, Maslennikova AV, Zakharova NV, Bernstein AV, Burnaev EV, et al.
    Sovrem Tekhnologii Med, 2022;14(5):53-75.
    PMID: 37181835 DOI: 10.17691/stm2022.14.5.06
    Schizophrenia is a socially significant mental disorder resulting frequently in severe forms of disability. Diagnosis, choice of treatment tactics, and rehabilitation in clinical psychiatry are mainly based on the assessment of behavioral patterns, socio-demographic data, and other investigations such as clinical observations and neuropsychological testing including examination of patients by the psychiatrist, self-reports, and questionnaires. In many respects, these data are subjective and therefore a large number of works have appeared in recent years devoted to the search for objective characteristics (indices, biomarkers) of the processes going on in the human body and reflected in the behavioral and psychoneurological patterns of patients. Such biomarkers are based on the results of instrumental and laboratory studies (neuroimaging, electro-physiological, biochemical, immunological, genetic, and others) and are successfully being used in neurosciences for understanding the mechanisms of the emergence and development of nervous system pathologies. Presently, with the advent of new effective neuroimaging, laboratory, and other methods of investigation and also with the development of modern methods of data analysis, machine learning, and artificial intelligence, a great number of scientific and clinical studies is being conducted devoted to the search for the markers which have diagnostic and prognostic value and may be used in clinical practice to objectivize the processes of establishing and clarifying the diagnosis, choosing and optimizing treatment and rehabilitation tactics, predicting the course and outcome of the disease. This review presents the analysis of the works which describe the correlates between the diagnosis of schizophrenia, established by health professionals, various manifestations of the psychiatric disorder (its subtype, variant of the course, severity degree, observed symptoms, etc.), and objectively measured characteristics/quantitative indicators (anatomical, functional, immunological, genetic, and others) obtained during instrumental and laboratory examinations of patients. A considerable part of these works has been devoted to correlates/biomarkers of schizophrenia based on the data of structural and functional (at rest and under cognitive load) MRI, EEG, tractography, and immunological data. The found correlates/biomarkers reflect anatomic disorders in the specific brain regions, impairment of functional activity of brain regions and their interconnections, specific microstructure of the brain white matter and the levels of connectivity between the tracts of various structures, alterations of electrical activity in various parts of the brain in different EEG spectral ranges, as well as changes in the innate and adaptive links of immunity. Current methods of data analysis and machine learning to search for schizophrenia biomarkers using the data of diverse modalities and their application during building and interpretation of predictive diagnostic models of schizophrenia have been considered in the present review.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links