A study was carried out to distinguish mono- (MAG) and di-acylglycerol (DAG) from plant lipids such as sunflower, rapeseed and soybean oil, from those derived from animal fats such as lard, goat fat and beef fat using fatty acid and thermal profile data. MAG and DAG of both plant and animal lipids were synthesized according to a chemical glycerolysis method catalyzed by sodium hydroxide. MAG and DAG of individual lipid were isolated and purified using the standard column chromatography method and subjected to fatty acid analysis by gas chromatography (GC) and thermal analysis by differential scanning calorimetry (DSC). The application of principal component analysis (PCA) to the data collected from the individual instrumental technique showed that it was possible to distinctly classify MAG and DAG of plant lipids from those derived from animal fats.
Changes in the physicochemical properties of wheat, sago, tapioca and potato starches were studied
after heating for 1 hour at 100oC, 110oC, and 120oC and for 2 hours at 120oC. These properties were characterised through the swelling behaviour of starch granules, amount of carbohydrate materials leached from the granules, starch paste retrogradation rate and gel strength. For all starches except wheat, the swelling ability, rate of retrogradation and gel strength decreased while solubility increased with increasing temperature and heating time. Wheat starch followed this pattern only when heated at 120oC for 1 and 2 hours. Gel strength correlated well with the ratio of amylose to amylopectin (R) in the leachate. To produce fried crackers with good expansion properties, the granule has to be sufficiently degraded so as to allow more amylopectin to be leached out to achieve R value of 0.25-0.5. This can be achieved by heating wheat starch at 120oC for 1 hour or longer.
The physico-chemical properties of spray-dried pitaya peel powders kept at accelerated (45 ± 2°C) and room temperature (28 ± 2°C) for 14 weeks and 6 months, respectively were evaluated. Changes in physico-chemical properties of the peel powder were used as indicators of stability, while changes of the betacyanin pigment retention was used to calculate the shelf-life of the powder. Storage temperatures significantly (p < 0.05) affected all the studied parameters and Hunter a value had the most significant change. The pigment retention of peel powder was approximately 87% at 45°C and 89% at room temperature storage. Degradation of betacyanin pigment in the powder followed the first order reaction kinetics with the half-life (t1/2) of approximately 76 weeks at 45°C and 38 months at 28°C. The spray-dried pitaya peel powder had a solubility of 87 to 92% and low in powder hygroscopicity. The final Aw of the powder did not exceed 0.6 for both storage temperatures.
Nipa sap or air nira is a sweet natural beverage obtained from a type of palm tree, Nypa fruticans.
It is readily and spontaneously fermented resulting in the development of alcoholic fermentation products. Objective of this study is to determine the volatile compounds (VOCs) responsible for the aroma in fresh and fermented nipa sap. The sap was left for natural fermentation at 30ºC for 63 days. VOCs of the sap were analysed using static headspace gas chromatography-mass spectrometry (GC-MS). Fresh nipa sap contained ethanol (83.43%), diacetyl (0.59%), and esters
(15.97%). Fermented nipa sap contained alcohols (91.16 – 98.29%), esters (1.18 – 8.14%), acetoin (0.02 – 0.7%), diacetyl (0.04 – 0.06%), and acetic acid (0.13 – 0.68%). Concentration of ethanol in fresh nipa sap increased from 0.11% (v/v) to 6.63% (v/v) during the fermentation, and slightly decreased to 5.73% (v/v) at day 63. No higher alcohols were detected in the fresh nipa sap. Concentration of 1-propanol and 2-methylpropanol were constant throughout the fermentation with average of 0.004 to 0.006% (v/v) and 0.0001 to 0.0009% (v/v), respectively. 3-methylbutanol increased during the fermentation process. The highest concentration (0.001% v/v) was recorded at day 35. This study has shown differences in VOCs types between fresh and fermented nipa sap.