Displaying all 5 publications

Abstract:
Sort:
  1. van der Ent A, Echevarria G, Nkrumah PN, Erskine PD
    Ann Bot, 2020 10 30;126(6):1017-1027.
    PMID: 32597938 DOI: 10.1093/aob/mcaa119
    BACKGROUND AND AIMS: The aim of this study was to test the frequency distributions of foliar elements from a large dataset from Kinabalu Park (Sabah, Malaysia) for departure from unimodality, indicative of a distinct ecophysiological response associated with hyperaccumulation.

    METHODS: We collected foliar samples (n = 1533) comprising 90 families, 198 genera and 495 plant species from ultramafic soils, further foliar samples (n = 177) comprising 45 families, 80 genera and 120 species from non-ultramafic soils and corresponding soil samples (n = 393 from ultramafic soils and n = 66 from non-ultramafic soils) from Kinabalu Park (Sabah, Malaysia). The data were geographically (Kinabalu Park) and edaphically (ultramafic soils) constrained. The inclusion of a relatively high proportion (approx. 14 %) of samples from hyperaccumulator species [with foliar concentrations of aluminium and nickel (Ni) >1000 μg g-1, cobalt, copper, chromium and zinc >300 μg g-1 or manganese (Mn) >10 mg g-1] allowed for hypothesis testing.

    KEY RESULTS: Frequency distribution graphs for most elements [calcium (Ca), magnesium (Mg) and phosphorus (P)] were unimodal, although some were skewed left (Mg and Mn). The Ni frequency distribution was bimodal and the separation point for the two modes was between 250 and 850 μg g-1.

    CONCLUSIONS: Accounting for statistical probability, the established empirical threshold value (>1000 μg g-1) remains appropriate. The two discrete modes for Ni indicate ecophysiologically distinct behaviour in plants growing in similar soils. This response is in contrast to Mn, which forms the tail of a continuous (approximately log-normal) distribution, suggestive of an extension of normal physiological processes.

  2. Tashakor M, Modabberi S, van der Ent A, Echevarria G
    Environ Monit Assess, 2018 May 08;190(6):333.
    PMID: 29737421 DOI: 10.1007/s10661-018-6668-5
    This study focused on the influence of ultramafic terrains on soil and surface water environmental chemistry in Peninsular Malaysia and in the State of Sabah also in Malaysia. The sampling included 27 soils from four isolated outcrops at Cheroh, Bentong, Bukit Rokan, and Petasih from Peninsular Malaysia and sites near Ranau in Sabah. Water samples were also collected from rivers and subsurface waters interacting with the ultramafic bodies in these study sites. Physico-chemical parameters (including pH, EC, CEC) as well as the concentration of major and trace elements were measured in these soils and waters. Geochemical indices (geoaccumulation index, enrichment factor, and concentration factor) were calculated. Al2O3 and Fe2O3 had relatively high concentrations in the samples. A depletion in MgO, CaO, and Na2O was observed as a result of leaching in tropical climate, and in relation to weathering and pedogenesis processes. Chromium, Ni, and Co were enriched and confirmed by the significant values obtained for Igeo, EF, and CF, which correspond to the extreme levels of contamination for Cr and high to moderate levels of contamination for Ni and Co. The concentrations of Cr, Ni, and Co in surface waters did not reflect the local geochemistry and were within the permissible ranges according to WHO and INWQS standards. Subsurface waters were strongly enriched by these elements and exceeded these standards. The association between Cr and Ni was confirmed by factor analysis. The unexpected enrichment of Cu in an isolated component can be explained by localized mineralization in Sabah.
  3. Bouman R, van Welzen P, Sumail S, Echevarria G, Erskine PD, van der Ent A
    Bot Stud, 2018 Mar 27;59(1):9.
    PMID: 29589161 DOI: 10.1186/s40529-018-0225-y
    BACKGROUND: Nickel hyperaccumulator plants are of much interest for their evolution and unique ecophysiology, and also for potential applications in agromining-a novel technology that uses plants to extract valuable metals from soil. The majority of nickel hyperaccumulators are known from ultramafic soils in tropical regions (Cuba, New Caledonia and Southeast Asia), and one genus, Phyllanthus (Phyllanthaceae), is globally the most represented taxonomic entity. A number of tropical Phyllanthus-species have the potential to be used as 'metal crops' in agromining operations mainly because of their ease in cultivation and their ability to attain high nickel concentrations and biomass yields.

    RESULTS: One of the most promising species globally for agromining, is the here newly described species Phyllanthus rufuschaneyi. This species can be classified in subgenus Gomphidium on account of its staminate nectar disc and pistillate entire style and represents the most western species of this diverse group. The flower structure indicates that this species is probably pollinated by Epicephala moths.

    CONCLUSIONS: Phyllanthus rufuschaneyi is an extremely rare taxon in the wild, restricted to Lompoyou Hill near Kinabalu Park in Sabah, Malaysia. Its utilization in agromining will be a mechanism for conservation of the taxon, and highlights the importance of habitat and germplasm preservation if rare species are to be used in novel green technologies.

  4. Tisserand R, van der Ent A, Nkrumah PN, Didier S, Sumail S, Morel JL, et al.
    Sci Total Environ, 2024 Apr 01;919:170691.
    PMID: 38325468 DOI: 10.1016/j.scitotenv.2024.170691
    Nickel hyperaccumulator plants play a major role in nickel recycling in ultramafic ecosystems, and under agromining the nickel dynamics in the farming system will be affected by removal of nickel-rich biomass. We investigated the biogeochemical cycling of nickel as well as key nutrients in an agromining operation that uses the metal crop Phyllanthus rufuschaneyi in the first tropical metal farm located in Borneo (Sabah, Malaysia). For two years, this study monitored nine 25-m2 plots and collected information on weather, biomass exportation, water, and litter fluxes to the soil. Without harvesting, nickel inputs and outputs had only minor contributions (<1 %) to the total nickel budget in this system. The nickel cycle was mainly driven by internal fluxes, particularly plant uptake, litterfall and throughfall. After two years of cropping, the nickel litter flux corresponded to 50 % of the total nickel stock in the aerial biomass (3.1 g m-2 year-1). Nickel was slowly released from the litter; after 15 months of degradation, 60 % of the initial biomass and the initial nickel quantities were still present in the organic layer. Calcium, phosphorus and potassium budgets in the system were negative without fertilisation. Unlike what is observed for nickel, sustained agromining would thus lead to a strong depletion of calcium stocks if mineral weathering cannot replenish it.
  5. Lopez S, van der Ent A, Sumail S, Sugau JB, Buang MM, Amin Z, et al.
    Environ Microbiol, 2020 04;22(4):1649-1665.
    PMID: 32128926 DOI: 10.1111/1462-2920.14970
    The Island of Borneo is a major biodiversity hotspot, and in the Malaysian state of Sabah, ultramafic soils are extensive and home to more than 31 endemic nickel hyperaccumulator plants. The aim of this study was to characterize the structure and the diversity of the rhizosphere bacterial communities of several of these nickel hyperaccumulator plants and factors that affect these bacterial communities in Sabah. The most abundant phyla were Proteobacteria, Acidobacteria and Actinobacteria. At family level, Burkholderiaceae and Xanthobacteraceae (Proteobacteria phylum) were the most abundant families in the hyperaccumulator rhizospheres. Redundancy analysis based on soil chemical analyses and relative abundances of the major bacterial phyla showed that abiotic factors of the studied sites drove the bacterial diversity. For all R. aff. bengalensis rhizosphere soil samples, irrespective of studied site, the bacterial diversity was similar. Moreover, the Saprospiraceae family showed a high representativeness in the R. aff. bengalensis rhizosphere soils and was linked with the nickel availability in soils. The ability of R. aff. bengalensis to concentrate nickel in its rhizosphere appears to be the major factor driving the rhizobacterial community diversity unlike for other hyperaccumulator species.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links