Escalating petroleum depletion and environmental crises linked to conventional plastics have fueled interest in eco-friendly alternatives. Natural fibres and biopolymers are garnering increasing attention due to their sustainability. The sago palm (Metroxylon sagu), a tropical tree, holds potential for such materials, with cellulose-rich fibres (42.4-44.12 %) showcasing strong mechanics. Extracted sago palm starch can be blended, reinforced, or plasticised for improved traits. However, a comprehensive review of sago palm fibres, starch, and biocomposites is notably absent. This paper fills this void, meticulously assessing recent advancements in sago palm fibre, cellulose and starch properties, and their eco-friendly composite fabrication. Moreover, it uncovers the latent prospects of sago palm fibres and biopolymers across industries like automotive, packaging, and bioenergy. This review presents a crucial resource for envisaging and realising sustainable materials.
Membrane separation processes are prevalent in industrial wastewater treatment because they are more effective than conventional methods at addressing global water issues. Consequently, the ideal membranes with high mechanical strength, thermal characteristics, flux, permeability, porosity, and solute removal capacity must be prepared to aid in the separation process for wastewater treatment. Rubber-based membranes have shown the potential for high mechanical properties in water separation processes to date. In addition, the excellent sustainable practice of natural fibers has attracted great attention from industrial players and researchers for the exploitation of polymer composite membranes to improve the balance between the environment and social and economic concerns. The incorporation of natural fiber in thermoplastic elastomer (TPE) as filler and pore former agent enhances the mechanical properties, and high separation efficiency characteristics of membrane composites are discussed. Furthermore, recent advancements in the fabrication technique of porous membranes affected the membrane's structure, and the performance of wastewater treatment applications is reviewed.
Considering the persistent human need for electricity and fresh water, cogeneration systems based on the production of these two products have attracted the attention of researchers. This study investigates a cogeneration system of electricity and fresh water based on gas turbine (GT) as the prime mover. The wasted energy of the GT exhaust gases is absorbed by a heat recovery steam generator (HRSG) and supplies the superheat steam required by the steam turbine (ST). In order to produce fresh water, a multi-effect desalination (MED) system is applied. The motive steam required is provided by extracting steam from the ST. In order to reduce the environmental pollution of this cogeneration system, the steam injection method is proposed in the GT's combustion chamber (CC). This system is optimized by a multi-objective optimization tool based on the Genetic Algorithm (GA). The design variables include pressure ratio of compressor (CPR), inlet temperature of gas turbine (TIT), steam injection mass flow rate in the CC, HRSG operating pressure, HRSG evaporator pinch point temperature difference (PPTD), steam pressure of the MED ejector, ejector motive steam flow rate, number of MED effects, and return effect. The goals are to minimize the total cost rate (TCR), which includes the cost of initial investment and maintenance of the system, the cost of consumed fuel, and the cost of disposing of CO and NO pollutants, as well as maximizing the exergy efficiency. In the end, it is observed that the steam injection in the CC leads to the reduction of the mentioned pollutant index, and it is proposed as a suitable solution to reduce the pollution of the proposed cogeneration system.
Recently, solar photovoltaic (PV) technology has shown tremendous growth among all renewable energy sectors. The attractiveness of a PV system depends deeply of the module and it is primarily determined by its performance. The quantity of electricity and power generated by a PV cell is contingent upon a number of parameters that can be intrinsic to the PV system itself, external or environmental. Thus, to improve the PV panel performance and lifetime, it is crucial to recognize the main parameters that directly influence the module during its operational lifetime. Among these parameters there are numerous factors that positively impact a PV system including the temperature of the solar panel, humidity, wind speed, amount of light, altitude and barometric pressure. On the other hand, the module can be exposed to simultaneous environmental stresses such as dust accumulation, shading and pollution factors. All these factors can gradually decrease the performance of the PV panel. This review not only provides the factors impacting PV panel's performance but also discusses the degradation and failure parameters that can usually affect the PV technology. The major points include: 1) Total quantity of energy extracted from a photovoltaic module is impacted on a daily, quarterly, seasonal, and yearly scale by the amount of dust formed on the surface of the module. 2) Climatic conditions as high temperatures and relative humidity affect the operation of solar cells by more than 70% and lead to a considerable decrease in solar cells efficiency. 3) The PV module current can be affected by soft shading while the voltage does not vary. In the case of hard shadowing, the performance of the photovoltaic module is determined by whether some or all of the cells of the module are shaded. 4) Compared to more traditional forms of energy production, PV systems offer a significant number of advantages to the environment. Nevertheless, these systems can procure greenhouse gas emissions, especially during the production stages. In conclusion, this study underlines the importance of considering multiple parameters while evaluating the performance of photovoltaic modules. Environmental factors can have a major impact on the performance of a PV system. It is critical to consider these factors, as well as intrinsic and other intermediate factors, to optimize the performance of solar energy systems. In addition, continuous monitoring and maintenance of PV systems is essential to ensure maximum efficiency and performance.