Displaying all 2 publications

Abstract:
Sort:
  1. Shahapurkar K, Chenrayan V, Soudagar MEM, Badruddin IA, Shahapurkar P, Elfasakhany A, et al.
    Polymers (Basel), 2021 Aug 27;13(17).
    PMID: 34502935 DOI: 10.3390/polym13172894
    The effect of crump rubber on the dry sliding wear behavior of epoxy composites is investigated in the present study. Wear tests are carried out for three levels of crump rubber (10, 20, and 30 vol.%), normal applied load (30, 40, and 50 N), and sliding distance (1, 3, and 5 km). The wear behavior of crump rubber-epoxy composites is investigated against EN31 steel discs. The hybrid mathematical approach of Taguchi-coupled Grey Relational Analysis (GRA)-Principal Component Analysis (PCA) is used to examine the influence of crump rubber on the tribological response of composites. Mathematical and experimental results reveal that increasing crump rubber content reduces the wear rate of composites. Composites also show a significant decrease in specific wear values at higher applied loads. Furthermore, the coefficient of friction also shows a decreasing trend with an increase in crump rubber content, indicating the effectiveness of reinforcing crump rubber in a widely used epoxy matrix. Analysis of Variance (ANOVA) results also reveal that the crump rubber content in the composite is a significant parameter to influence the wear characteristic. The post-test temperature of discs increases with an increase in the applied load, while decreasing with an increase in filler loading. Worn surfaces are analyzed using scanning electron microscopy to understand structure-property correlations. Finally, existing studies available in the literature are compared with the wear data of the present study in the form of a property map.
  2. Sanjeevannavar MB, Banapurmath NR, Soudagar MEM, Atgur V, Hossain N, Mujtaba MA, et al.
    Chemosphere, 2022 Feb;288(Pt 2):132450.
    PMID: 34624353 DOI: 10.1016/j.chemosphere.2021.132450
    Biodiesel commercialization is questionable due to poor brake thermal efficiency. Biodiesel utilization should be improved with the addition of fuel additives. Hydrogen peroxide is a potential fuel additive due to extra hydrogen and oxygen content, which improves the combustion process. In this experimental study, biodiesel has been produced from Jatropha oil employing catalyzed transesterification homogeneously to examine its influence on the performance and emissions at engine loads with 1500 rpm utilizing a four-stroke single-cylinder diesel engine. D60B40 (having 60% diesel and 40% biodiesel) and D60B30A10 (60% diesel, 30% biodiesel and 10% hydrogen peroxide (H2O2)), are the fuel mixtures in the current study. The addition of H2O2 reduces emissions and enhances the combustion process. This effect occurred due to the micro-explosion of the injected fuel particles (which increases in-cylinder pressure and heat release rate (HRR)). An increase of 20% in BTE and 25% reduction in BSFC for D60B30A10 was observed compared to D60B40. Significant reduction in emissions of HC up to 17.54%, smoke by 24.6% CO2 by 3.53%, and an increase in NOx was noticed when the engine is operated with D60B30A10. The HRR increased up to 18.6%, ID reduced by 10.82%, and in-cylinder pressure increased by 8.5%. Test runs can be minimized as per Taguchi's design of experiments. It is possible to provide the estimates for the full factorial design of experiments. Exhaust gas temperature standards are evaluated and examined for all fuel blends.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links