The objective of this study was to investigate the effect of selected biopolymers on the rheological properties of surimi. In our paper, we highlight the functional properties and rheological aspects of some starch mixtures used in surimi. However, the influence of some other ingredients, such as cryoprotectants, mannans, and hydroxylpropylmethylcellulose (HPMC), on the rheological properties of surimi is also described. The outcome reveals that storage modulus increased with the addition of higher levels of starch. Moreover, the increasing starch level increased the breaking force, deformation, and gel strength of surimi as a result of the absorption of water by starch granules in the mixture to make the surimi more rigid. On the other hand, the addition of cryoprotectants, mannans, and HPMC improved the rheological properties of surimi. The data obtained in this paper could be beneficial particularly to the scientists who deal with food processing field.
This review article highlights the thermal behaviors of selected starches that were studied using differential scanning calorimetery (DSC) with data shown in various research publications. The starches of sago, potato, sweet potato, cassava, yam, and corn are included in this overview. Our examinations indicate that thermal properties are highly affected by the type of starch, its amylose/amylopectin content, and the presence of other food ingredients such as sugar, sodium chloride, water, milk, hydrocolloids, and meat. When the heating temperatures of the starches were increased, the DSC measurements also showed an increase in the temperatures of the gelatinization (onset [To ], peak [Tp ], and conclusion [Tc ]). This may be attributed to the differences in the degree of crystallinity of the starch, which provides structural stability and makes the granule more resistant to gelatinization.
Chitosan is a promising biopolymer for drug delivery systems. Because of its beneficial properties, chitosan is widely used in biomedical and pharmaceutical fields. In this review, we summarize the physicochemical and drug delivery properties of chitosan, selected studies on utilization of chitosan and chitosan-based nanoparticle composites in various drug delivery systems, and selected studies on the application of chitosan films in both drug delivery and wound healing. Chitosan is considered the most important polysaccharide for various drug delivery purposes because of its cationic character and primary amino groups, which are responsible for its many properties such as mucoadhesion, controlled drug release, transfection, in situ gelation, and efflux pump inhibitory properties and permeation enhancement. This review can enhance our understanding of drug delivery systems particularly in cases where chitosan drug-loaded nanoparticles are applied.