Displaying all 2 publications

Abstract:
Sort:
  1. Zhou Y, Nevosadová L, Eliasson E, Lauschke VM
    Hum Genomics, 2023 Feb 28;17(1):15.
    PMID: 36855170 DOI: 10.1186/s40246-023-00461-z
    BACKGROUND: Genetic variability in the cytochrome P450 CYP2C9 constitutes an important predictor for efficacy and safety of various commonly prescribed drugs, including coumarin anticoagulants, phenytoin and multiple non-steroidal anti-inflammatory drugs (NSAIDs). A global map of CYP2C9 variability and its inferred functional consequences has been lacking.

    RESULTS: Frequencies of eight functionally relevant CYP2C9 alleles (*2, *3, *5, *6, *8, *11, *13 and *14) were analyzed. In total, 108 original articles were identified that included genotype data from a total of 81,662 unrelated individuals across 70 countries and 40 unique ethnic groups. The results revealed that CYP2C9*2 was most abundant in Europe and the Middle East, whereas CYP2C9*3 was the main reason for reduced CYP2C9 activity across South Asia. Our data show extensive variation within superpopulations with up to tenfold differences between geographically adjacent populations in Malaysia, Thailand and Vietnam. Translation of genetic CYP2C9 variability into functional consequences indicates that up to 40% of patients in Southern Europe and the Middle East might benefit from warfarin and phenytoin dose reductions, while 3% of patients in Southern Europe and Israel are recommended to reduce starting doses of NSAIDs.

    CONCLUSIONS: This study provides a comprehensive map of the genetic and functional variability of CYP2C9 with high ethnogeographic resolution. The presented data can serve as a useful resource for CYP2C9 allele and phenotype frequencies and might guide the optimization of genotyping strategies, particularly for indigenous and founder populations with distinct genetic profiles.

  2. Hatta FH, Lundblad M, Ramsjo M, Kang JH, Roh HK, Bertilsson L, et al.
    OMICS, 2015 Jun;19(6):346-53.
    PMID: 25977991 DOI: 10.1089/omi.2015.0022
    Global personalized medicine demands the characterization of person-to-person and between-population differences in drug pharmacokinetics and pharmacodynamics. CYP2C9 pharmacokinetic pathway is subject to modulation by both genetic and environmental factors. CYP2C9 genotype-based dose recommendations (e.g., for warfarin) is advocated. However, the overall contribution of genotype for variation in enzyme activity may differ between populations. We evaluated the importance of ethnicity, genotype, smoking, body weight, age, and sex for CYP2C9 enzyme activity. CYP2C9 genotype and phenotype was determined in 148 Swedes and 146 Koreans using losartan as a probe. CYP2C9 enzyme activity was assessed using urinary losartan/metabolite E-3174 ratio. The frequency of CYP2C9 defective variant alleles (*2 and *3) was significantly higher in Swedes (10.8% and 12.5%) than in Koreans (0% and 5.8%). In matched genotypes, CYP2C9 enzyme activity was significantly lower in Swedes compared to Koreans (p<0.0001). In a univariate analysis, age, weight, ethnicity, genotype, and smoking were significant predictors of CYP2C9 phenotype. A stepwise multivariate analysis indicated ethnicity, genotype, and smoking remained as significant predictors of CYP2C9 enzyme activity, accounting for 50% of the total variance. In both study populations, CYP2C9 genotype was a significant predictor of CYP2C9 enzyme activity, but its contribution in explaining the total variance was lower in Koreans (26.6%) than Swedes (40%). In conclusion, we report significantly lower CYP2C9 enzyme activity in Swedes compared to Koreans, partly but not exclusively due to CYP2C9 pharmacogenetic variations. Ethnicity and environment factors need to be considered together with genotype for population-specific dose optimization and global personalized medicine.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links