Displaying all 6 publications

Abstract:
Sort:
  1. Gan HM, Eng WWH, Dhanoa A
    J Glob Antimicrob Resist, 2020 03;20:153-159.
    PMID: 31325618 DOI: 10.1016/j.jgar.2019.07.008
    OBJECTIVES: Despite the increasing reports of carbapenem-resistant Enterobacteriaceae in Malaysia, genomic resources for carbapenem-resistant clinical strains of Klebsiella pneumoniae (K. pneumoniae) remain unavailable. This study aimed to sequence the genomes of multiple carbapenem-resistant K. pneumoniae strains from Malaysia and to identify the genetic basis for their resistance.

    METHODS: Illumina whole genome sequencing was performed on eight carbapenem-resistant K. pneumoniae isolated from a Malaysian hospital. Genetic diversity was inferred from the assembled genomes based on in silico multilocus sequence typing (MLST). In addition, plasmid-derived and chromosome-derived contigs were predicted using the machine learning approach. After genome annotation, genes associated with carbapenem resistance were identified based on similarity searched against the ResFinder database.

    RESULTS: The eight K. pneumoniae isolates were grouped into six different sequence types, some of which were represented by a single isolate in the MLST database. Genomic potential for carbapenem-resistance was attributed to the presence of plasmid-localised blaNDM (blaNDM-1/blaNDM-5) or blaKPC (blaKPC-2/blaKPC-6) in these sequenced strains. The majority of these carbapenem resistance genes was flanked by repetitive (transposase or integrase) sequences, suggesting their potential mobility. This study also reported the first blaKPC-6-harbouring plasmid contig to be assembled for K. pneumoniae, and the second for the genus Klebsiella.

    CONCLUSION: This study reported the first genomic resources for carbapenem-resistant K. pneumoniae from Malaysia. The high diversity of carbapenem resistance genes and sequence types uncovered from eight isolates from the same hospital is worrying and indicates an urgent need to improve the genomic surveillance of clinical K. pneumoniae in Malaysia.

  2. Gan HM, Eng WWH, Dhanoa A
    Data Brief, 2019 Aug;25:104257.
    PMID: 31384648 DOI: 10.1016/j.dib.2019.104257
    We report the whole genome sequencing data and de novo genome assemblies for eight extended-spectrum beta-lactamases (ESBL) producing Enterobacteriaceae isolates from Malaysia consisting of four Klebsiella pneumoniae, two Enterobacter harmaechei, one Citrobacter freundii and one Escherichia coli. We identified at least one ESBL gene in each genome, with blaCTX-M-15 being the most prevalent ESBL gene in the current genomic sampling.
  3. Md Zoqratt MZH, Eng WWH, Thai BT, Austin CM, Gan HM
    PeerJ, 2018;6:e5826.
    PMID: 30397546 DOI: 10.7717/peerj.5826
    Aquaculture production of the Pacific white shrimp is the largest in the world for crustacean species. Crucial to the sustainable global production of this important seafood species is a fundamental understanding of the shrimp gut microbiota and its relationship to the microbial ecology of shrimp pond. This is especially true, given the recently recognized role of beneficial microbes in promoting shrimp nutrient intake and in conferring resistance against pathogens. Unfortunately, aquaculture-related microbiome studies are scarce in Southeast Asia countries despite the severe impact of early mortality syndrome outbreaks on shrimp production in the region. In this study, we employed the 16S rRNA amplicon (V3-V4 region) sequencing and amplicon sequence variants (ASV) method to investigate the microbial diversity of shrimp guts and pond water samples collected from aquaculture farms located in Malaysia and Vietnam. Substantial differences in the pond microbiota were observed between countries with the presence and absence of several taxa extending to the family level. Microbial diversity of the shrimp gut was found to be generally lower than that of the pond environments with a few ubiquitous genera representing a majority of the shrimp gut microbial diversity such as Vibrio and Photobacterium, indicating host-specific selection of microbial species. Given the high sequence conservation of the 16S rRNA gene, we assessed its veracity at distinguishing Vibrio species based on nucleotide alignment against type strain reference sequences and demonstrated the utility of ASV approach in uncovering a wider diversity of Vibrio species compared to the conventional OTU clustering approach.
  4. Gan HM, Rajasekaram G, Eng WWH, Kaniappan P, Dhanoa A
    Genome Announc, 2017 Aug 10;5(32).
    PMID: 28798179 DOI: 10.1128/genomeA.00768-17
    We report the whole-genome sequences of two carbapenem-resistant clinical isolates of Klebsiella quasipneumoniae subsp. similipneumoniae obtained from two different patients. Both strains contained three different extended-spectrum β-lactamase genes and showed strikingly high pairwise average nucleotide identity of 99.99% despite being isolated 3 years apart from the same hospital.
  5. Foo SM, Eng WWH, Lee YP, Gui K, Gan HM
    Genome Announc, 2017 May 11;5(19).
    PMID: 28495773 DOI: 10.1128/genomeA.00302-17
    The acquisition of Photorhabdus insect-related (Pir) toxin-like genes in Vibrio parahaemolyticus has been linked to hepatopancreatic necrosis disease in shrimp. We report the whole-genome sequences of genetically virulent and avirulent V. parahaemolyticus isolated from a Malaysian aquaculture pond and show that they represent previously unreported sequence types of V. parahaemolyticus.
  6. Gan HM, Eng WWH, Barton MK, Adams LE, Samsudin NA, Bartl AJ, et al.
    Genome Announc, 2017 Aug 24;5(34).
    PMID: 28839032 DOI: 10.1128/genomeA.00857-17
    We report here the genome sequences of Salmonella enterica subsp. enterica serovar Typhimurium strains TT6675 and TT9097, which we utilize for genetic analyses of giant bacterial viruses. Our analyses identified several genetic variations between the two strains, most significantly confirming strain TT6675 as a serine suppressor and TT9097 as a nonsuppressor.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links