Poor glycaemic control and the duration of diabetes mellitus are known to accelerate development and progression of neuropathy. Diabetic co-morbidities: hypertension and hyperlipidaemia, have been postulated to associate with development of neuropathy. A diabetic foot with low temperature and frequent exposure to low temperature environment has recently been hypothesized to be at higher risk to develop early neuropathy. This cross-sectional study is undertaken to identify risk factors for diabetic neuropathy and the association between foot temperature and development of diabetic neuropathy by using simple clinical examination in the outpatient setting. From April 18, to April 30, 2005, universal sampling method was used to select 134 diabetic patients (type 1 or type 2 for >1 year) with peripheral neuropathy. Excluded are those with chronic alcoholism, drug-induced neuropathy, dietary history of vitamin B deficiency and family history of porphyria and hereditary sensorimotor neuropathy. The patient's duration of diabetes, glycaemic control status and the presence of co-morbids: hypertension and hyperlipidemia, were recorded. The temperature of the foot was measured by using thermo buddy. Of 134 patients representing Malaysian ethnic distribution with an equal number of males and females, 20.1% were in the age group of 61 to 65 years and, 85.1% and 67.9% belonged to lower socioeconomic and educational groups respectively. Associations between diabetic neuropathy and glycaemic control (p = 0.018) and duration of diabetes (p < 0.05) were significant. However, hypertension, hyperlipidaemia and low foot temperature were not significantly associated with development of diabetic neuropathy. Poor glycaemic control is significantly associated with diabetic neuropathy. Foot temperature alteration is merely an effect of autonomic neuropathy with a cold foot is attributed to co-existing peripheral arterial disease.
Study site: Pusat Perubatan Primer Bandar Tasik Selatan, Kuala Lumpur, Malaysia
Tofacitinib is the first oral JAK inhibitor approved for treating rheumatoid arthritis (RA). To enhance our understanding of tofacitinib drug response, we used hierarchical clustering to analyse the profiles of patient who responded to the treatment in a real-world setting. Patients who commenced on tofacitinib treatment were selected from 12 major rheumatology centres in Malaysia. The aim was to assess their response to tofacitinib defined as achieving DAS28-CRP/ESR ≤ 3.2 and DAS28 improvement > 1.2 at 12 weeks. A hierarchical clustering analysis was performed using sociodemographic and clinical parameters at baseline. All 163 RA patients were divided into three clusters (Clusters 1, 2 and 3) based on specific clinical factors at baseline including bone erosion, antibody positivity, disease activity and anaemia status. Cluster 1 consisted of RA patients without bone erosion, antibody negative, low baseline disease activity measure and absence of anaemia. Cluster 2 comprised of patients without bone erosion, RF positivity, anti-CCP negativity, moderate to high baseline disease activity score and absence of anaemia. Cluster 3 patients had bone erosion, antibody positivity, high baseline disease activity and anaemia. The response rates to tofacitinib varied among the clusters: Cluster 1 had a 79% response rate, Cluster 2 had a 66% response rate, and Cluster 3 had a 36% response rate. The differences in response rates between the three clusters were found to be statistically significant. This cluster analysis study indicates that patients who are seronegative and have low disease activity, absence of bone erosion and no signs of anaemia may have a higher likelihood of benefiting from tofacitinib therapy. By identifying clinical profiles that respond to tofacitinib treatment, we can improve treatment stratification yielding significant benefits and better health outcomes for individuals with RA.