Displaying all 2 publications

Abstract:
Sort:
  1. AlDahoul N, Karim HA, Momo MA, Escobar FIF, Magallanes VA, Tan MJT
    Sci Rep, 2023 Sep 22;13(1):15818.
    PMID: 37740108 DOI: 10.1038/s41598-023-43068-z
  2. AlDahoul N, Karim HA, Momo MA, Escobar FIF, Magallanes VA, Tan MJT
    Sci Rep, 2023 Sep 02;13(1):14475.
    PMID: 37660120 DOI: 10.1038/s41598-023-41711-3
    Intestinal parasitic infections (IPIs) caused by protozoan and helminth parasites are among the most common infections in humans in low-and-middle-income countries. IPIs affect not only the health status of a country, but also the economic sector. Over the last decade, pattern recognition and image processing techniques have been developed to automatically identify parasitic eggs in microscopic images. Existing identification techniques are still suffering from diagnosis errors and low sensitivity. Therefore, more accurate and faster solution is still required to recognize parasitic eggs and classify them into several categories. A novel Chula-ParasiteEgg dataset including 11,000 microscopic images proposed in ICIP2022 was utilized to train various methods such as convolutional neural network (CNN) based models and convolution and attention (CoAtNet) based models. The experiments conducted show high recognition performance of the proposed CoAtNet that was tuned with microscopic images of parasitic eggs. The CoAtNet produced an average accuracy of 93%, and an average F1 score of 93%. The finding opens door to integrate the proposed solution in automated parasitological diagnosis.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links