Displaying all 3 publications

Abstract:
Sort:
  1. Darbandi M, Darbandi S, Agarwal A, Baskaran S, Dutta S, Sengupta P, et al.
    J Assist Reprod Genet, 2019 Feb;36(2):241-253.
    PMID: 30382470 DOI: 10.1007/s10815-018-1350-y
    PURPOSE: This study was conducted in order to investigate the effects of reactive oxygen species (ROS) levels on the seminal plasma (SP) metabolite milieu and sperm dysfunction.

    METHODS: Semen specimens of 151 normozoospermic men were analyzed for ROS by chemiluminescence and classified according to seminal ROS levels [in relative light units (RLU)/s/106 sperm]: group 1 (n = 39): low (ROS S): The methylation status of H19 and Igf2 was significantly different in specimens with high ROS (P S): Results showed significant correlation between ROS levels and H19-Igf2 gene methylation as well as semen parameters. These findings are critical to identify idiopathic male infertility and its management through assisted reproduction technology (ART).

  2. Agarwal A, Finelli R, Selvam MKP, Leisegang K, Majzoub A, Tadros N, et al.
    World J Mens Health, 2021 Jul;39(3):470-488.
    PMID: 33831977 DOI: 10.5534/wjmh.210025
    PURPOSE: The use of antioxidants is common practice in the management of infertile patients. However, there are no established guidelines by professional societies on antioxidant use for male infertility.

    MATERIALS AND METHODS: Using an online survey, this study aimed to evaluate the practice pattern of reproductive specialists to determine the clinical utility of oxidative stress (OS) testing and antioxidant prescriptions to treat male infertility.

    RESULTS: Responses from 1,327 participants representing 6 continents, showed the largest participant representation being from Asia (46.8%). The majority of participants were attending physicians (59.6%), with 61.3% having more than 10 years of experience in the field of male infertility. Approximately two-thirds of clinicians (65.7%) participated in this survey did not order any diagnostic tests for OS. Sperm DNA fragmentation was the most common infertility test beyond a semen analysis that was prescribed to study oxidative stress-related dysfunctions (53.4%). OS was mainly tested in the presence of lifestyle risk factors (24.6%) or sperm abnormalities (16.3%). Interestingly, antioxidants were prescribed by 85.6% of clinicians, for a duration of 3 (43.7%) or 3-6 months (38.6%). A large variety of antioxidants and dietary supplements were prescribed, and scientific evidence were mostly considered to be modest to support their clinical use. Results were not influenced by the physician's age, geographic origin, experience or training in male infertility.

    CONCLUSIONS: This study is the largest online survey performed to date on this topic and demonstrates 1) a worldwide understanding of the importance of this therapeutic option, and 2) a widely prevalent use of antioxidants to treat male infertility. Finally, the necessity of evidence-based clinical practice guidelines from professional societies is highlighted.

  3. Agarwal A, Parekh N, Panner Selvam MK, Henkel R, Shah R, Homa ST, et al.
    World J Mens Health, 2019 Sep;37(3):296-312.
    PMID: 31081299 DOI: 10.5534/wjmh.190055
    Despite advances in the field of male reproductive health, idiopathic male infertility, in which a man has altered semen characteristics without an identifiable cause and there is no female factor infertility, remains a challenging condition to diagnose and manage. Increasing evidence suggests that oxidative stress (OS) plays an independent role in the etiology of male infertility, with 30% to 80% of infertile men having elevated seminal reactive oxygen species levels. OS can negatively affect fertility via a number of pathways, including interference with capacitation and possible damage to sperm membrane and DNA, which may impair the sperm's potential to fertilize an egg and develop into a healthy embryo. Adequate evaluation of male reproductive potential should therefore include an assessment of sperm OS. We propose the term Male Oxidative Stress Infertility, or MOSI, as a novel descriptor for infertile men with abnormal semen characteristics and OS, including many patients who were previously classified as having idiopathic male infertility. Oxidation-reduction potential (ORP) can be a useful clinical biomarker for the classification of MOSI, as it takes into account the levels of both oxidants and reductants (antioxidants). Current treatment protocols for OS, including the use of antioxidants, are not evidence-based and have the potential for complications and increased healthcare-related expenditures. Utilizing an easy, reproducible, and cost-effective test to measure ORP may provide a more targeted, reliable approach for administering antioxidant therapy while minimizing the risk of antioxidant overdose. With the increasing awareness and understanding of MOSI as a distinct male infertility diagnosis, future research endeavors can facilitate the development of evidence-based treatments that target its underlying cause.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links