Displaying all 5 publications

Abstract:
Sort:
  1. Junxian L, Mehrabanian M, Mivehchi H, Banakar M, Etajuri EA
    Oral Dis, 2023 Oct;29(7):2552-2564.
    PMID: 36004490 DOI: 10.1111/odi.14360
    OBJECTIVES: Periodontitis (PD) is one of the most common dental disorders. This chronic oral inflammation is caused by complicated interrelations between bacterial infections, dysregulated immune reactions, and environmental risk factors. A dysregulated immune response can lead to inflammatory bone resorption by allowing the recruitment of pro-inflammatory immune cells to the periodontal tissues.

    SUBJECTS: The recruitment of innate and adaptive immune cells in PD initiates the acute and following chronic inflammatory processes. The inflamed tissues, on the other hand, can be restored if the anti-inflammatory lineages are predominantly established in the periodontal tissues. Therefore, we aimed to review the published literature to provide an overview of the existing knowledge about the role of immune cells in PD, as well as their possible therapeutic applications.

    RESULTS: Experimental studies showed that drugs/systems that negatively regulate inflammatory cells in the body, as well as interventions aimed at increasing the number of anti-inflammatory cells such as Tregs and Bregs, can both help in the healing process of PD.

    CONCLUSION: Targeting immune cells or their positive/negative manipulations has been demonstrated to be an effective therapeutic method. However, to use this sort of immunotherapy in humans, further pre-clinical investigations, as well as randomized clinical trials, are required.

  2. Abdelrehim A, Etajuri EA, Sulaiman E, Sofian H, Salleh NM
    J Prosthet Dent, 2022 Nov 07.
    PMID: 36357194 DOI: 10.1016/j.prosdent.2022.09.010
    STATEMENT OF PROBLEM: Attaining a passive fit in implant restorations is desirable but clinically difficult to achieve, especially in screw-retained prostheses. At a certain magnitude, this misfit will not cause mechanical and biological complications, but the exact level has yet to be determined.

    PURPOSE: The purpose of this systematic review was to gather, compare, and appraise studies that attempted to determine the biological and mechanical tolerance of misfits.

    MATERIAL AND METHODS: The review protocol was published in the Prospective Register for Systematic Reviews (PROSPERO; registration no. CRD42021268399) and follows the Preferred Reporting for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. An electronic search was conducted through PubMed, Ebscohost, and Web of Science followed by a manual search up to December 2021.

    RESULTS: A total of 413 manuscripts were identified by electronic and manual search. After removing duplicates, nonrelevant titles, and abstract screening, 62 manuscripts were eligible for full-text assessment. Finally, a total of 13 articles (1 cross-sectional study, 1 retrospective and prospective, 7 in vitro studies, and 4 animal studies) met the eligibility criteria and were included in this review. A wide range of tolerable misfits were reported. Vertical misfit up to 1 mm and horizontal misfit up to 345 μm were associated with no adverse outcomes.

    CONCLUSIONS: The current literature provides inadequate data to determine a clinical threshold of an acceptable misfit. However, this review demonstrated that the mechanical response to misfit is more critical than the biological response.

  3. Etajuri EA, Suliman E, Mahmood WAA, Ibrahim N, Buzayan M, Mohd NR
    Dent Med Probl, 2021 1 16;57(4):359-362.
    PMID: 33448161 DOI: 10.17219/dmp/123976
    BACKGROUND: There is very little literature available on the reliability of the rapid prototyping technology in the production of three-dimension (3D)-printed surgical guides for accurate implant placement.

    OBJECTIVES: The aim of the study was to evaluate the deviation of implant placement performed with a surgical guide fabricated by means of the rapid prototyping technique (the PolyJet™ technology).

    MATERIAL AND METHODS: Twenty sheep mandibles were used in the study. Pre-surgical cone-beam computed tomography (CBCT) scans were acquired for the mandibles by using the Kodak 9000 3D cone-beam system. Two implants with dimensions of 4 mm in diameter and 10 mm in length were virtually planned on the 3D models of each mandible by using the Mimics software, v. 16.0. Twenty surgical guides were designed and printed using the PolyJet technology. A total of 40 implants were placed using the surgical guides, 1 on each side of the mandible (2 implants per mandible). The post-surgical CBCT scans of the mandibles were performed and superimposed on the pre-surgical CBCT scans. The amount of deviation between the virtually planned placement and the actual implant placement was measured, and a descriptive analysis was done.

    RESULTS: The results showed that the mean deviation at the implant coronal position was 1.82 ±0.74 mm, the mean deviation at the implant apex was 1.54 ±0.88 mm, the mean depth deviation was 0.44 ±0.32 mm, and the mean angular deviation was 3.01 ±1.98°.

    CONCLUSIONS: The deviation of dental implant placement performed with a 3D-printed surgical guide (the PolyJet technology) is within the acceptable 2-millimeter limit reported in the literature.

  4. Nasiri K, Amiri Moghaddam M, Etajuri EA, Badkoobeh A, Tavakol O, Rafinejad M, et al.
    Clin Transl Oncol, 2023 Oct;25(10):2801-2811.
    PMID: 37036595 DOI: 10.1007/s12094-023-03162-0
    Periodontitis is a polymicrobial disorder caused by dysbiosis. Porphyromonas gingivalis (P.gingivalis) and Fusobacterium nucleatum (F.nucleatum) are pathobiont related to periodontitis pathogenesis and were found to be abundant in the intestinal mucosa of inflammatory bowel disease (IBD) and colorectal cancer (CRC) patients. Besides, periodontal infections have been found in a variety of tissues and organs, indicating that periodontitis is not just an inflammation limited to the oral cavity. Considering the possible translocation of pathobiont from the oral cavity to the gastrointestinal (GI) tract, this study aimed to review the published articles in this field to provide a comprehensive view of the existing knowledge about the relationship between periodontitis and GI malignancies by focusing on the oral/gut axis.
  5. Kiarashi M, Bayat H, Shahrtash SA, Etajuri EA, Khah MM, Al-Shaheri NA, et al.
    Stem Cell Rev Rep, 2024 Apr;20(3):688-721.
    PMID: 38308730 DOI: 10.1007/s12015-024-10687-6
    Biomedical engineering breakthroughs and increased patient expectations and requests for more comprehensive care are propelling the field of regenerative dentistry forward at a fast pace. Stem cells (SCs), bioactive compounds, and scaffolds are the mainstays of tissue engineering, the backbone of regenerative dentistry. Repairing damaged teeth and gums is a significant scientific problem at present. Novel therapeutic approaches for tooth and periodontal healing have been inspired by tissue engineering based on mesenchymal stem cells (MSCs). Furthermore, as a component of the MSC secretome, extracellular vesicles (EVs) have been shown to contribute to periodontal tissue repair and regeneration. The scaffold, made of an artificial extracellular matrix (ECM), acts as a supporting structure for new cell development and tissue formation. To effectively promote cell development, a scaffold must be non-toxic, biodegradable, biologically compatible, low in immunogenicity, and safe. Due to its promising biological characteristics for cell regeneration, dental tissue engineering has recently received much attention for its use of natural or synthetic polymer scaffolds with excellent mechanical properties, such as small pore size and a high surface-to-volume ratio, as a matrix. Moreover, as a bioactive material for carrying MSC-EVs, the combined application of scaffolds and MSC-EVs has a better regenerative effect on dental diseases. In this paper, we discuss how MSCs and MSC-derived EV treatment may be used to regenerate damaged teeth, and we highlight the role of various scaffolds in this process.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links