The effect of the recently developed graphene nanoflakes (GNFs) on the polymerase chain reaction (PCR) has been investigated in this paper. The rationale behind the use of GNFs is their unique physical and thermal properties. Experiments show that GNFs can enhance the thermal conductivity of base fluids and results also revealed that GNFs are a potential enhancer of PCR efficiency; moreover, the PCR enhancements are strongly dependent on GNF concentration. It was found that GNFs yield DNA product equivalent to positive control with up to 65% reduction in the PCR cycles. It was also observed that the PCR yield is dependent on the GNF size, wherein the surface area increases and augments thermal conductivity. Computational fluid dynamics (CFD) simulations were performed to analyze the heat transfer through the PCR tube model in the presence and absence of GNFs. The results suggest that the superior thermal conductivity effect of GNFs may be the main cause of the PCR enhancement.
The performance of water as a heat transfer medium in numerous applications is limited by its effective thermal conductivity. To improve the thermal conductivity of water, herein, we report the development and thermophysical characterization of novel metal-metal-oxide-carbon-based ternary-hybrid nanoparticles (THNp) GO-TiO2-Ag and rGO-TiO2-Ag. The results indicate that the graphene oxide- and reduced graphene oxide-based ternary-hybrid nanoparticles dispersed in water enhance the base fluid (H2O) thermal conductivity by 66% and 83%, respectively, even at very low concentrations. Mechanisms contributing to this significant enhancement are discussed. The experimental thermal conductivity is plotted against the existing empirical hybrid thermal conductivity correlations. We found that those correlations are not suitable for the metal-metal-oxide-carbon combinations, calling for new thermal conductivity models. Furthermore, the rheological measurements of the nanofluids display non-Newtonian behavior, and the viscosity reduces with the increase in temperature. Such behavior is possibly due to the non-uniform shapes of the ternary-hybrid nanoparticles.