Displaying all 2 publications

Abstract:
Sort:
  1. Faruck MO, Yusof F, Chowdhury S
    Peptides, 2016 06;80:80-88.
    PMID: 26093218 DOI: 10.1016/j.peptides.2015.06.001
    Fungi are not classified as plants or animals. They resemble plants in many ways but do not produce chlorophyll or make their own food photosynthetically like plants. Fungi are useful for the production of beer, bread, medicine, etc. More complex than viruses or bacteria; fungi can be destructive human pathogens responsible for various diseases in humans. Most people have a strong natural immunity against fungal infection. However, fungi can cause diseases when this immunity breaks down. In the last few years, fungal infection has increased strikingly and has been accompanied by a rise in the number of deaths of cancer patients, transplant recipients, and acquired immunodeficiency syndrome (AIDS) patients owing to fungal infections. The growth rate of fungi is very slow and quite difficult to identify. A series of molecules with antifungal activity against different strains of fungi have been found in insects, which can be of great importance to tackle human diseases. Insects secrete such compounds, which can be peptides, as a part of their immune defense reactions. Active antifungal peptides developed by insects to rapidly eliminate infectious pathogens are considered a component of the defense munitions. This review focuses on naturally occurring antifungal peptides from insects and their challenges to be used as armaments against human diseases.
  2. Chowdhury S, Yusof F, Salim WW, Sulaiman N, Faruck MO
    J. Photochem. Photobiol. B, Biol., 2016 Nov;164:151-159.
    PMID: 27683958 DOI: 10.1016/j.jphotobiol.2016.09.013
    Cancer is a complicated disease for which finding a cure presents challenges. In recent decades, new ways to treat cancer are being sought; one being nanomedicine, which manipulates nanoparticles to target a cancer and release drugs directly to the cancer cells. A number of cancer treatments based on nanomedicine are under way and mostly are in preclinical trials owing to challenges in administration, safety, and effectiveness. One alternative method for drug delivery is the use of photovoltaic nanoparticles, which has the potential to deliver drugs via light activation. The concepts are based on standard photovoltaic cell that holds opposite charges on its surfaces and releases drugs when charge intensity or polarity changes upon photo-stimulation such as from a laser source or sunlight. This review will cover some recent progress in cancer treatment using nanoparticles, including photovoltaic nanoparticles.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links