Displaying publications 1 - 20 of 28 in total

Abstract:
Sort:
  1. Azizi S, Mohamad R, Bahadoran A, Bayat S, Rahim RA, Ariff A, et al.
    PMID: 27318600 DOI: 10.1016/j.jphotobiol.2016.06.007
    The use of nontoxic biological compounds in the synthesis of nanomaterials is an economic and eco-friendly approach. The present work was undertaken to develop zinc oxide nanoparticles (ZnO-NPs) by a green method using simple precursor from the solution consisting of zinc acetate and the flower extract of Anchusa italica (A. italica). Effect of annealing temperature on structural and antimicrobial properties was investigated. The crystalline structure of ZnO-NPs was shown using X-ray diffraction (XRD) analysis. Transmission electron microscopy (TEM) results showed that ZnO-NPs are hexagonal in shapes with mean particle size of ~8 and ~14nm at 100°C and 200°C annealing temperatures respectively. The optical band gap was increased from 3.27eV to 3.30eV with the decreasing of the particle size. The antimicrobial activity of ZnO-NPs towards Gram positive (Bacillus megaterium and Stapphylococcus aureus) and Gram negative (Escherichia coli and Salmonella typhimurium) pathogens decreased with the increasing of the heat treating temperature. In vitro cytotoxicity studies on Vero cells, a dose dependent toxicity with non-toxic effect of concentration below 142μg/mL was shown. The results indicated that A. italica is an appropriate reaction media to prepare ZnO-NPs for cosmetic and bio-medical productions.
  2. Nanjundan N, Selvakumar P, Narayanasamy R, Haque RA, Velmurugan K, Nandhakumar R, et al.
    J. Photochem. Photobiol. B, Biol., 2014 Dec;141:176-85.
    PMID: 25463665 DOI: 10.1016/j.jphotobiol.2014.10.009
    Two nickel(II) complexes with formula NiL1 and NiL2 (HL1 = S-allyl-4-methoxybenzylidene hydrazinecarbodithioate, HL2 = S-allyl-1-napthylidenehydrazinecarbodithioate) have been synthesized and characterized by elemental analysis, FT-IR, NMR, UV-vis spectroscopy and ESI mass spectrometry. The crystal structure of complex 1 has been determined by single crystal X-ray diffractometry. Both HL1 and HL2 ligands are coordinated to the metal in thiolate form. In complexes, squareplanar geometry of the nickel is coordinated with two bidentate ligand units acting through azomethine nitrogen and thiolato sulfur atoms. To explore the potential medicinal value of the complexes with calf thymus DNA and bovine serum albumin (BSA) were studied at normal physiological conditions using fluorescence spectral techniques. The DNA binding constant values of the complexes were found in the range from 5.02 × 10(4), 3.54 × 10(4), and the binding affinities are in the following order 1 > 2. In addition, nickel complexes 1 and 2 shows better binding propensity to the bovine serum albumin (BSA) protein, giving a Ksv value 5.8 × 10(4), 4.47 × 10(4) respectively. From the oxidative cleavage of the complexes with pBR322 DNA, it is inferred that the effects of cleavage are dose-dependent. In addition, in vitro cytotoxicity of the complexes assayed against Vero and HeLa cell lines have shown higher cytotoxic activity with the lower IC50 values indicating their efficiency in killing cancer cells even at various concentrations.
  3. Hosseinzadeh M, Mohamad J, Khalilzadeh MA, Zardoost MR, Haak J, Rajabi M
    J. Photochem. Photobiol. B, Biol., 2013 Nov 5;128:85-91.
    PMID: 24077497 DOI: 10.1016/j.jphotobiol.2013.08.002
    The bark of Litsea costalis affords two new compounds named 4,4'-diallyl-5,5'-dimethoxy-[1,1'-biphennyl]-2,2'-diol, biseugenol A (1) and 2,2'-oxybis (4-allyl-1-methoxybenzene), biseugenol B (2) along with two known compounds (3-4), namely 5-methoxy-2-Hydroxy Benzaldehyde (3), and (E)-4-styrylphenol (4). The structures of 1 and 2 were determined using 1D and 2D NMR data. Also, the IR and NMR data were combined with quantum chemical calculations in the DFT approach using the hybrid B3LYP exchange-correlation function to confirm the structures of the compounds. Compounds showed fairly potent anticancer activity against cell lines and antioxidant (DPPH).
  4. Moy FM
    J. Photochem. Photobiol. B, Biol., 2011 Sep 02;104(3):444-8.
    PMID: 21636288 DOI: 10.1016/j.jphotobiol.2011.05.002
    Vitamin D status is influenced by sun exposure, geographic latitude, daily outdoor activities, body surface exposed to sunlight and dietary intakes. Malaysia, is sunny all year round. However, the vitamin D status of this population especially among the healthy and free living adults is not known. Therefore a study of vitamin D status and associated factors was initiated among an existing Malay cohort in Kuala Lumpur. A total of 380 subjects were sampled to have their vitamin D status assessed using 25-hydroxyvitamin D (25(OH)D). A short questionnaire enquiring socio-demographic characteristics, exposure to sunlight and clothing style was administered. Their mean age was 48.5±5.2years and the mean 25(OH)D for males and females were 56.2±18.9nmol/L and 36.2±13.4nmol/L respectively. There were significant positive correlation for sun exposure score (r=0.27, p<0.001) and negative correlation for sun protection score (r=-0.41, p<0.001) with 25(OH)D levels. In the logistic regression model, females (OR=2.93; 95% CI: 1.17, 7.31), BMI (1.1; 1.03, 1.20) and sun exposure score (0.998; 0.996, 0.999) were significantly associated with vitamin D status as represented by 25(OH)D levels. Our findings show that obesity, lifestyle behaviours and clothing style are directly associated with our participants especially females' low vitamin D status.
  5. Ong CY, Ling SK, Ali RM, Chee CF, Samah ZA, Ho AS, et al.
    J. Photochem. Photobiol. B, Biol., 2009 Sep 4;96(3):216-22.
    PMID: 19647445 DOI: 10.1016/j.jphotobiol.2009.06.009
    One hundred and fifty-five extracts from 93 terrestrial species of plants in Peninsula Malaysia were screened for in vitro photo-cytotoxic activity by means of a cell viability test using a human leukaemia cell-line HL60. These plants which can be classified into 43 plant families are diverse in their type of vegetation and their natural habitat in the wild, and may therefore harbour equally diverse metabolites with potential pharmaceutical properties. Of these, 29 plants, namely three from each of the Clusiaceae, Leguminosae, Rutaceae and Verbenaceae families, two from the Piperaceae family and the remaining 15 are from Acanthaceae, Apocynaceae, Bignoniaceae, Celastraceae, Chrysobalanaceae, Irvingiaceae, Lauraceae, Lythraceae, Malvaceae, Meliaceae, Moraceae, Myristicaceae, Myrsinaceae, Olacaceae and Sapindaceae. Hibiscus cannabinus (Malvaceae), Ficus deltoidea (Moraceae), Maranthes corymbosa (Chrysobalanaceae), Micromelum sp., Micromelum minutum and Citrus hystrix (Rutaceae), Cryptocarya griffithiana (Lauraceae), Litchi chinensis (Sapindaceae), Scorodocarpus bornensis (Olacaceae), Kokoona reflexa (Celastraceae), Irvingia malayana (Irvingiaceae), Knema curtisii (Myristicaceae), Dysoxylum sericeum (Meliaceae), Garcinia atroviridis, Garcinia mangostana and Calophyllum inophyllum (Clusiaceae), Ervatamia hirta (Apocynaceae), Cassia alata, Entada phaseoloides and Leucaena leucocephala (Leguminosae), Oroxylum indicum (Bignoniaceae), Peronema canescens,Vitex pubescens and Premna odorata (Verbenaceae), Piper mucronatum and Piper sp. (Piperaceae), Ardisia crenata (Myrsinaceae), Lawsonia inermis (Lythraceae), Strobilanthes sp. (Acanthaceae) were able to reduce the in vitro cell viability by more than 50% when exposed to 9.6J/cm(2) of a broad spectrum light when tested at a concentration of 20 microg/mL. Six of these active extracts were further fractionated and bio-assayed to yield four photosensitisers, all of which are based on the pheophorbide-a and -b core structures. Our results suggest that the main photosensitisers from terrestrial plants are likely based on the cyclic tetrapyrrole structure and photosensitisers with other structures, if present, are present in minor amounts or are not as active as those with the cyclic tetrapyrrole structure.
  6. Faizul FM, Abdul Kadir H, Tayyab S
    J. Photochem. Photobiol. B, Biol., 2008 Jan 30;90(1):1-7.
    PMID: 18024146
    The interaction between bromocresol purple (BCP) and bovine serum albumin (BSA)/porcine serum albumin (PSA) was investigated both in the absence and presence of bilirubin (BR) using absorption/absorption difference spectroscopy. A significant red shift in the absorption maxima of BCP accompanied by a decrease in absorbance was indicative of BCP binding to albumin. The titration of BSA and PSA with BCP using absorption difference spectroscopy and analysis of results by Benesi-Hildebrand equation yielded the values of association constant, K as 9.9+/-0.9x10(4)Lmol(-1) and 4.1+/-0.3x10(4)Lmol(-1) for BSA and PSA, respectively. The differential extinction coefficient (Deltaepsilon) of 34,484M(-1)cm(-1) at 615nm and 41,870M(-1)cm(-1) at 619nm were estimated for BSA and PSA, respectively. Decrease in (DeltaAbs.)(615nm) of BCP-BSA complex with the increase in ionic strength suggested the role of hydrophobic interactions in the binding phenomenon. A significant blue shift in the absorption maxima and change in (DeltaAbs)(lambdamax) values of BR-albumin complexes upon addition of increasing concentrations of BCP revealed the BR displacing action of BCP on albumin molecule.
  7. Lau P, Bidin N, Krishnan G, AnaybBaleg SM, Sum MB, Bakhtiar H, et al.
    PMID: 26313856 DOI: 10.1016/j.jphotobiol.2015.08.009
    The photobiostimulation effects of near infrared 808 nm diode laser irradiance on diabetic wound were investigated. 120 rats were induced with diabetes by streptozotocin injection. Full thickness punch wounds of 6mm diameter were created on the dorsal part of the rats. All rats were randomly distributed into four groups; one group served as control group, whereas three groups were stimulated daily with unchanged energy density dose of 5 J/cm(2) with different power density, which were 0.1 W/cm(2), 0.2 W/cm(2) and 0.3 W/cm(2) with different exposure duration of 50s, 25s and 17s, respectively. Ten rats from each group were sacrificed on day 3, 6 and 9, respectively. Skin tissues were removed for histological purpose. The contraction of wound was found optimized after exposure with 0.1 W/cm(2). Based on the histological evidence, laser therapy has shown able to promote wound repair through enhanced epithelialization and collagen fiber synthesis. Generally, irradiated groups were advanced in terms of healing than non-irradiated group.
  8. Kabir MZ, Mukarram AK, Mohamad SB, Alias Z, Tayyab S
    J. Photochem. Photobiol. B, Biol., 2016 Jul;160:229-39.
    PMID: 27128364 DOI: 10.1016/j.jphotobiol.2016.04.005
    Interaction of a promising anticancer drug, lapatinib (LAP) with the major transport protein in human blood circulation, human serum albumin (HSA) was investigated using fluorescence and circular dichroism (CD) spectroscopy as well as molecular docking analysis. LAP-HSA complex formation was evident from the involvement of static quenching mechanism, as revealed by the fluorescence quenching data analysis. The binding constant, Ka value in the range of 1.49-1.01×10(5)M(-1), obtained at three different temperatures was suggestive of the intermediate binding affinity between LAP and HSA. Thermodynamic analysis of the binding data (∆H=-9.75kJmol(-1) and ∆S=+65.21Jmol(-1)K(-1)) suggested involvement of both hydrophobic interactions and hydrogen bonding in LAP-HSA interaction, which were in line with the molecular docking results. LAP binding to HSA led to the secondary and the tertiary structural alterations in the protein as evident from the far-UV and the near-UV CD spectral analysis, respectively. Microenvironmental perturbation around Trp and Tyr residues in HSA upon LAP binding was confirmed from the three-dimensional fluorescence spectral results. LAP binding to HSA improved the thermal stability of the protein. LAP was found to bind preferentially to the site III in subdomain IB on HSA, as probed by the competitive drug displacement results and supported by the molecular docking results. The effect of metal ions on the binding constant between LAP and HSA was also investigated and the results showed a decrease in the binding constant in the presence of these metal ions.
  9. Teh SJ, Yeoh SL, Lee KM, Lai CW, Abdul Hamid SB, Thong KL
    PMID: 27203568 DOI: 10.1016/j.jphotobiol.2016.05.013
    The immobilization of photocatalyst nanoparticles on a solid substrate is an important aspect for improved post-treatment separation and photocatalyst reactor design. In this study, we report the simple preparation of reduced graphene oxide (rGO)-hybridized zinc oxide (ZnO) thin films using a one-step electrochemical deposition, and investigated the effect of rGO-hybridization on the photoinactivation efficiency of ZnO thin films towards Staphylococcus aureus (S. aureus) and Salmonella enterica serovar Typhi (S. Typhi) as target bacterial pathogens. Field-emission scanning electron microscopy (FESEM) revealed the formation of geometric, hexagonal flakes of ZnO on the ITO glass substrate, as well as the incorporation of rGO with ZnO in the rGO/ZnO thin film. Raman spectroscopy indicated the successful incorporation of rGO with ZnO during the electrodeposition process. Photoluminescence (PL) spectroscopy indicates that rGO hybridization with ZnO increases the amount of oxygen vacancies, evidenced by the shift of visible PL peak at 650 to 500nm. The photoinactivation experiments showed that the thin films were able to reduce the bacterial cell density of Staph. aureus and S. Typhi from an initial concentration of approximately 10(8) to 10(3)CFU/mL within 15min. The rGO/ZnO thin film increased the photoinactivation rate for S. aureus (log[N/No]) from -5.1 (ZnO) to -5.9. In contrast, the application of rGO/ZnO thin film towards the photoinactivation of S. Typhi did not improve its photoinactivation rate, compared to the ZnO thin film. We may summarise that (1) rGO/ZnO was effective to accelerate the photoinactivation of S. aureus but showed no difference to improve the photoinactivation of S. Typhi, in comparison to the performance of ZnO thin films, and (2) the photoinactivation in the presence of ZnO and rGO/ZnO was by ROS damage to the extracellular wall.
  10. Baig U, Gondal MA, Alam MF, Wani WA, Younus H
    J. Photochem. Photobiol. B, Biol., 2016 Nov;164:244-255.
    PMID: 27710872 DOI: 10.1016/j.jphotobiol.2016.09.034
    Cancer and pathogenic microbial diseases have terribly affected human health over a longer period of time. In response to the increasing casualties due to cancer and microbial diseases, unique poly(3-methylthiophene) and poly(3-methylthiophene)-titanium(IV)phosphate composite were prepared via in-situ oxidative chemical polymerization in this work. The poly(3-methylthiophene) and poly(3-methylthiophene)-titanium(IV)phosphate composite were well characterized by Fourier transform infrared spectroscopy and field emission scanning electron microscopy. DNA binding studies by UV-Visible and fluorescence spectroscopic investigations indicated strong binding affinities of poly(3-methylthiophene) and poly(3-methylthiophene)-titanium(IV)phosphate nanocomposite; leading to structural damage of DNA. Poly(3-methylthiophene)-titanium(IV)phosphate nanocomposite showed stronger interactions with DNA as compared to poly(3-methylthiophene) and from dye displacement assay it was confirmed that mode of binding of both the formulations was intercalative. The antimicrobial screening revealed that polymer and its composite displayed stronger antibacterial effects than ampicillin against Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella typhimurium. Besides, the poly(3-methylthiophene) and poly(3-methylthiophene)-titanium(IV)phosphate nanocomposite showed dose dependent effects towards estrogen receptor positive breast cancer (MCF-7) and estrogen receptor negative breast cancer (MDA-MB-231) cell lines; with poly(3-methylthiophene)-titanium(IV)phosphate nanocomposite showing better activities against both cell lines. In all in-vitro biological investigations, poly(3-methylthiophene)-titanium(IV)phosphate composite showed superior properties to that of the pure poly(3-methylthiophene), which encouraged us to suggest its potential as future therapeutic gear in drug delivery and other allied fields.
  11. Tayyab S, Izzudin MM, Kabir MZ, Feroz SR, Tee WV, Mohamad SB, et al.
    J. Photochem. Photobiol. B, Biol., 2016 Sep;162:386-94.
    PMID: 27424099 DOI: 10.1016/j.jphotobiol.2016.06.049
    Binding characteristics of a promising anticancer drug, axitinib (AXT) to human serum albumin (HSA), the major transport protein in human blood circulation, were studied using fluorescence, UV-vis absorption and circular dichroism (CD) spectroscopy as well as molecular docking analysis. A gradual decrease in the Stern-Volmer quenching constant with increasing temperature revealed the static mode of the protein fluorescence quenching upon AXT addition, thus confirmed AXT-HSA complex formation. This was also confirmed from alteration in the UV-vis spectrum of HSA upon AXT addition. Fluorescence quenching titration results demonstrated moderately strong binding affinity between AXT and HSA based on the binding constant value (1.08±0.06×10(5)M(-1)), obtained in 10mM sodium phosphate buffer, pH7.4 at 25°C. The sign and magnitude of the enthalpy change (∆H=-8.38kJmol(-1)) as well as the entropy change (∆S=+68.21Jmol(-1)K(-1)) clearly suggested involvement of both hydrophobic interactions and hydrogen bonding in AXT-HSA complex formation. These results were well supported by molecular docking results. Three-dimensional fluorescence spectral results indicated significant microenvironmental changes around Trp and Tyr residues of HSA upon complexation with AXT. AXT binding to the protein produced significant alterations in both secondary and tertiary structures of HSA, as revealed from the far-UV and the near-UV CD spectral results. Competitive drug displacement results obtained with phenylbutazone (site I marker), ketoprofen (site II marker) and hemin (site III marker) along with molecular docking results suggested Sudlow's site I, located in subdomain IIA of HSA, as the preferred binding site of AXT.
  12. Chowdhury S, Yusof F, Salim WW, Sulaiman N, Faruck MO
    J. Photochem. Photobiol. B, Biol., 2016 Nov;164:151-159.
    PMID: 27683958 DOI: 10.1016/j.jphotobiol.2016.09.013
    Cancer is a complicated disease for which finding a cure presents challenges. In recent decades, new ways to treat cancer are being sought; one being nanomedicine, which manipulates nanoparticles to target a cancer and release drugs directly to the cancer cells. A number of cancer treatments based on nanomedicine are under way and mostly are in preclinical trials owing to challenges in administration, safety, and effectiveness. One alternative method for drug delivery is the use of photovoltaic nanoparticles, which has the potential to deliver drugs via light activation. The concepts are based on standard photovoltaic cell that holds opposite charges on its surfaces and releases drugs when charge intensity or polarity changes upon photo-stimulation such as from a laser source or sunlight. This review will cover some recent progress in cancer treatment using nanoparticles, including photovoltaic nanoparticles.
  13. Jukapli NM, Bagheri S
    J. Photochem. Photobiol. B, Biol., 2016 Oct;163:421-30.
    PMID: 27639172 DOI: 10.1016/j.jphotobiol.2016.08.046
    This review provides a background, fundamental and advanced application of titania nanoparticles (TiO2) on the disinfection and killing of cancer cell through photocatalytic chemistry. It starts with the characteristic properties focused on the surface, light sensitivity, crystallinity and toxicology of TiO2 as a photocatalyst. Consequently, outline and design of photocatalytic reactor has been figured out based on the target organisms, including bacteria, viruses, fungi and cancer cells. Despite a large number of studies undertaken, limited selectivity and efficacy of TiO2 photocatalyst are still widely accepted problems. An ideal TiO2 photocatalyst should have the combined properties of highly stable reactive oxygen species yield and a greater degree of selectivity towards cancerous cell without damaging the healthy tissues. Hybridization of TiO2 with metal, metal oxide and carbon nano materials significantly improved both of stability and selectivity of TiO2, whilst maintaining its high Photodynamic reactivity.
  14. Qiang S, Alsaeedi HA, Yuhong C, Yang H, Tong L, Kumar S, et al.
    J. Photochem. Photobiol. B, Biol., 2018 Jun;183:127-132.
    PMID: 29704860 DOI: 10.1016/j.jphotobiol.2018.04.003
    BACKGROUND: Retinal degeneration is a condition ensued by various ocular disorders such as artery occlusion, diabetic retinopathy, retrolental fibroplasia and retinitis pigmentosa which cause abnormal loss of photoreceptor cells and lead to eventual vision impairment. No efficient treatment has yet been found, however, the use of stem cell therapy such as bone marrow and embryonic stem cells has opened a new treatment modality for retinal degenerative diseases. The major goal of this study is to analyze the potential of endothelial progenitor cells derived from bone marrow to differentiate into retinal neural cells for regenerative medicine purposes.

    METHODS: In this study, endothelial progenitor cells were induced in-vitro with photoreceptor growth factor (taurine) for 21 days. Subsequently, the morphology and gene expression of CRX and RHO of the photoreceptors-induced EPCs were examined through immunostaining assay.

    FINDINGS: The results indicated that the induced endothelial progenitor cells demonstrated positive gene expression of CRX and RHO. Our findings suggested that EPC cells may have a high advantage in cell replacement therapy for treating eye disease, in addition to other neural diseases, and may be a suitable cell source in regenerative medicine for eye disorders.

  15. Abduljabbar T, Vohra F, Akram Z, Ghani SMA, Al-Hamoudi N, Javed F
    J. Photochem. Photobiol. B, Biol., 2017 Aug;173:353-359.
    PMID: 28641206 DOI: 10.1016/j.jphotobiol.2017.06.016
    BACKGROUND: Oral pigmentation, especially in the gingiva poses esthetic problems. Laser therapy has been widely used for cosmetic therapy in dentistry. The aim of the present study was to systematically review the efficacy of surgical laser therapy (SLT) in the management of oral pigmented lesions (OPL).

    MATERIALS AND METHODS: The addressed focused question was "Is SLT effective in the management of OPL?" Databases (MEDLINE via PubMed; EMBASE; Cochrane Central Register of Controlled Trials and Cochrane Oral Health Group Trials Register databases) were searched from 1970 up to and including February 2017.

    RESULTS: Ten studies were included. The reported number of OPL ranged between 8 and 140. Oral pigmented sites included, gingiva, buccal and labial mucosa, alveolar mucosa and lips. Lasers used in the studies included Q-switched alexandrite, Neodymium-doped yttrium aluminium garnet, diode, Erbium: yttrium aluminium garnet and carbon dioxide laser. Laser wavelength, power output and number of irradiations were 635-10,600nm, 1-10W and 1 to 9 times, respectively. The follow up period ranged from 6 to 24months. All studies reported SLT to be effective in the treatment of OPL. In five studies, recurrence of OPL occurred which ranged from 21.4% to 45%.

    CONCLUSIONS: Lasers are effective in the management of OPL including physiologic gingival pigmentation, smokers' melanosis and pigmentation in Laugier-Hunziker syndrome. Different laser types (CO2, Er:YAG and Diode) showed comparable outcomes in the treatment of OPL.

  16. Suardi N, Sodipo BK, Mustafa MZ, Ali Z
    J. Photochem. Photobiol. B, Biol., 2016 Jul 28;162:703-706.
    PMID: 27508880 DOI: 10.1016/j.jphotobiol.2016.07.041
    In this work we present influence of visible laser light on ATP level and viability of anaemic red blood cell (RBC). The visible laser lights used in this work are 460nm and 532nm. The responses of ATP level in anaemic and normal RBC before and after laser irradiation at different exposure time (30, 40, 50 and 60s) were observed. Three aliquots were prepared from the ethylenediaminetetraacetic acid (EDTA) blood sample. One served as a control (untreated) and another two were irradiated with 460nm and 560nm lasers. Packed RBC was prepared to study ATP level in the RBC using CellTiter-GloLuminescent cell Viability Assay kit. The assay generates a glow type signal produced by luciferase reaction, which is proportional to the amount of ATP present in RBCs. Paired t-test were done to analyse ATP level before and after laser irradiation. The results revealed laser irradiation improve level of ATP in anaemic RBC. Effect of laser light on anaemic RBCs were significant over different exposure time for both 460nm (p=0.000) and 532nm (p=0.003). The result of ATP level is further used as marker for RBC viability. The influence of ATP level and viability were studied. Optical densities obtained from the data were used to determine cell viability of the samples. Results showed that laser irradiation increased viability of anaemic RBC compared to normal RBC.
  17. Sathishkumar P, Preethi J, Vijayan R, Mohd Yusoff AR, Ameen F, Suresh S, et al.
    PMID: 27541567 DOI: 10.1016/j.jphotobiol.2016.08.005
    In this present investigation, AgNPs were green synthesised using Coriandrum sativum leaf extract. The physicochemical properties of AgNPs were characterised using UV-visible spectrophotometer, field emission scanning microscopy/energy dispersive X-ray (FESEM/EDX), Fourier transformed infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) analysis. Further, in vitro anti-acne, anti-dandruff and anti-breast cancer efficacy of green synthesised AgNPs were assessed against Propionibacterium acnes MTCC 1951, Malassezia furfur MTCC 1374 and human breast adenocarcinoma (MCF-7) cell line, respectively. The flavonoids present in the plant extract were responsible for the AgNPs synthesis. The green synthesised nanoparticles size was found to be ≈37nm. The BET analysis result shows that the surface area of the synthesised AgNPs was found to be 33.72m(2)g(-1). The minimal inhibitory concentration (MIC) of AgNPs for acne causative agent P. acnes and dandruff causative agent M. furfur was found to be at 3.1 and 25μgmL(-1), respectively. The half maximal inhibitory concentration (IC50) value of the AgNPs for MCF-7 cells was calculated as 30.5μgmL(-1) and complete inhibition was observed at a concentration of 100μgmL(-1). Finally, our results proved that green synthesised AgNPs using C. sativum have great potential in biomedical applications such as anti-acne, anti-dandruff and anti-breast cancer treatment.
  18. Quek JA, Lam SM, Sin JC, Mohamed AR
    PMID: 30099271 DOI: 10.1016/j.jphotobiol.2018.07.030
    Flower-like ZnO micro/nanostructures were successfully fabricated via a surfactant-free co-precipitation method. The as-synthesized product was characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX), transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FTIR), UV-vis diffuse reflectance spectroscopy (UV-vis DRS) and photoluminescence (PL) analyses. In the presence of visible light irradiation, the as-synthesized flower-like ZnO showed higher antibacterial activities against Enterococcus faecalis (E. faecalis) and Micrococcus luteus (M. luteus) than that of commercial ZnO. The excellent antibacterial performance of synthesized flower-like ZnO was also observed via the bacterial morphological change, K+ ions leakage and protein leakage in extracellular suspension. In addition, the FTIR investigation on both treated bacteria further confirmed the bacterial membrane damage via cellular substance alteration. The enhancement of the antibacterial activity of synthesized ZnO can be attributed to the unique flower-like morphology which can increase the surface OH- groups and the quantity of photogenerated electron-hole pair available to participate in the photocatalytic reaction. The reactive oxidizing species (ROS) scavengers experiments showed that H2O2 played a main role in the photocatalytic antibacterial process. Our study showed that the synthesized flower-like ZnO micro/nanostructures can act as efficient antibacterial agents in the photocatalytic antibacterial process under visible light irradiation.
  19. Ferrando S, Agas D, Mirata S, Signore A, De Angelis N, Ravera S, et al.
    J. Photochem. Photobiol. B, Biol., 2019 Oct;199:111627.
    PMID: 31536925 DOI: 10.1016/j.jphotobiol.2019.111627
    Photobiomodulation relies on the transfer of energy from incident photons to a cell photoacceptor. For many years the concept of photobiomodulation and its outcome has been based upon a belief that the sole receptor within the cell was the mitochondrion. Recently, it has become apparent that there are other photoacceptors operating in different regions of the electromagnetic spectrum. Alternative photoacceptors would appear to be water and mechanisms regulating calcium homeostasis, despite a direct effect of laser photonic energy on intracellular calcium concentration outwith mitochondrial activity or influence, have not been clearly demonstrated. Therefore, to increase the knowledge of intracellular‑calcium and laser photon interaction, as well as to demonstrate differences in irradiation profiles with modern hand-pieces, we tested and compared the photobiomodulatory effect of 808 nm and 980 nm diode laser light by low- and higher-energy (60s, 100 mW/cm2, 100 mW/cm2, 500 mW/cm2, 1000 mW/cm2, 1500 mW/cm2, 2000 mW/cm2) irradiated with a "standard" (Gaussian fluence distribution) hand-piece or with a "flat-top" (uniform fluence) hand-piece. For this purpose, we used the eukaryote unicellular-model Dictyostelium discoideum. The 808 nm and 980 nm infrared laser light, at the energy tested directly affect the stored Ca2+ homeostasis, independent of the mitochondrial respiratory chain activities. From an organism perspective, the effect on Ca2+-dependent signal transduction as the regulator of spore germination in Dictyostelium, demonstrates how a cell can respond quickly to the correct laser photonic stimulus through a different cellular pathway than the known light-chromophore(mitochondria) interaction. Additionally, both hand-piece designs tested were able to photobiomodulate the D. discoideum cell; however, the hand-piece with a flat-top profile, through uniform fluence levels allows more effective and reproducible effects.
  20. Ashraf MA, Peng WX, Fakhri A, Hosseini M, Kamyab H, Chelliapan S
    J. Photochem. Photobiol. B, Biol., 2019 Sep;198:111579.
    PMID: 31401316 DOI: 10.1016/j.jphotobiol.2019.111579
    The sol-gel/ultrasonically rout produced the novel MnS2-SiO2 nano-hetero-photocatalysts with the various ratio of MnS2. Prepared nano-catalyst were investigated in the photo-degradation of methylene blue under UV light illumination. Structural and optical attributes of as-prepared nano-catalysts were evaluated by X-ray diffraction and photoelectron spectroscopy. The morphological were studied by scanning electron microscopy-EDS, and dynamic light scattering. The diffuse reflectance spectroscopy was applied to examine the band gap energy. The Eg values of SiO2, MnS2-SiO2-0, MnS2-SiO2-1, and MnS2-SiO2-2 nanocomposites are 6.51, 3.85, 3.17, and 2.67 eV, respectively. The particle size of the SiO2 and MnS2-SiO2-1 nanocomposites were 100.0, and 65.0 nm, respectively. The crystallite size values of MnS2-SiO2-1 were 52.21 nm, and 2.9 eV, respectively. MnS2-SiO2 nano-photocatalyst was recognized as the optimum sample by degrading 96.1% of methylene blue from water. Moreover, the influence of pH of the solution, and contact time as decisive factors on the photo-degradation activity were investigated in this project. The optimum data for pH and time were found 9 and 60 min, respectively. The photo-degradation capacity of MnS2-SiO2-2 is improved (96.1%) due to the low band gap was found from UV-vis DRS. The antimicrobial data of MnS2-SiO2 were studied and demonstrated that the MnS2-SiO2 has fungicidal and bactericidal attributes.
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links