Displaying all 10 publications

Abstract:
Sort:
  1. Field HE
    Zoonoses Public Health, 2009 Aug;56(6-7):278-84.
    PMID: 19497090 DOI: 10.1111/j.1863-2378.2008.01218.x
    Nearly 75% of all emerging infectious diseases (EIDs) that impact or threaten human health are zoonotic. The majority have spilled from wildlife reservoirs, either directly to humans or via domestic animals. The emergence of many can be attributed to predisposing factors such as global travel, trade, agricultural expansion, deforestation/habitat fragmentation, and urbanization; such factors increase the interface and/or the rate of contact between human, domestic animal, and wildlife populations, thereby creating increased opportunities for spillover events to occur. Infectious disease emergence can be regarded as primarily an ecological process. The epidemiological investigation of EIDs associated with wildlife requires a trans-disciplinary approach that includes an understanding of the ecology of the wildlife species, and an understanding of human behaviours that increase risk of exposure. Investigations of the emergence of Nipah virus in Malaysia in 1999 and severe acute respiratory syndrome (SARS) in China in 2003 provide useful case studies. The emergence of Nipah virus was associated with the increased size and density of commercial pig farms and their encroachment into forested areas. The movement of pigs for sale and slaughter in turn led to the rapid spread of infection to southern peninsular Malaysia, where the high-density, largely urban pig populations facilitated transmission to humans. Identifying the factors associated with the emergence of SARS in southern China requires an understanding of the ecology of infection both in the natural reservoir and in secondary market reservoir species. A necessary extension of understanding the ecology of the reservoir is an understanding of the trade, and of the social and cultural context of wildlife consumption. Emerging infectious diseases originating from wildlife populations will continue to threaten public health. Mitigating and managing the risk requires an appreciation of the connectedness between human, livestock and wildlife health, and of the factors and processes that disrupt the balance.
  2. Mackenzie JS, Field HE
    PMID: 15119765
    Three newly recognized encephalitogenic zoonotic viruses spread from fruit bats of the genus Pteropus (order Chiroptera, suborder Megachiroptera) have been recognised over the past decade. These are: Hendra virus, formerly named equine morbillivirus, which was responsible for an outbreak of disease in horses and humans in Brisbane, Australia, in 1994; Australian bat lyssavirus, the cause of a severe acute encephalitis, in 1996; and Nipah virus, the cause of a major outbreak of encephalitis and pulmonary disease in domestic pigs and people in peninsula Malaysia in 1999. Hendra and Nipah viruses have been shown to be the first two members of a new genus, Henipavirus, in the family Paramyxoviridae, subfamily Paramyxovirinae, whereas Australian bat lyssavirus is closely related antigenically to classical rabies virus in the genus Lyssavirus, family Rhabdoviridae, although it can be distinguished on genetic grounds. Hendra and Nipah viruses have neurological and pneumonic tropisms. The first humans and equids with Hendra virus infections died from acute respiratory disease, whereas the second human patient died from an encephalitis. With Nipah virus, the predominant clinical syndrome in humans was encephalitic rather than respiratory, whereas in pigs, the infection was characterised by acute fever with respiratory involvement with or without neurological signs. Two human infections with Australian bat lyssavirus have been reported, the clinical signs of which were consistent with classical rabies infection and included a diffuse, non-suppurative encephalitis. Many important questions remain to be answered regarding modes of transmission, pathogenesis, and geographic range of these viruses.
  3. Field HE, Mackenzie JS, Daszak P
    PMID: 17848064
    Two related, novel, zoonotic paramyxoviruses have been described recently. Hendra virus was first reported in horses and thence humans in Australia in 1994; Nipah virus was first reported in pigs and thence humans in Malaysia in 1998. Human cases of Nipah virus infection, apparently unassociated with infection in livestock, have been reported in Bangladesh since 2001. Species of fruit bats (genus Pteropus) have been identified as natural hosts of both agents. Anthropogenic changes (habitat loss, hunting) that have impacted the population dynamics of Pteropus species across much of their range are hypothesised to have facilitated emergence. Current strategies for the management of henipaviruses are directed at minimising contact with the natural hosts, monitoring identified intermediate hosts, improving biosecurity on farms, and better disease recognition and diagnosis. Investigation of the emergence and ecology of henipaviruses warrants a broad, cross-disciplinary ecosystem health approach that recognises the critical linkages between human activity, ecological change, and livestock and human health.
  4. Mackenzie JS, Field HE, Guyatt KJ
    J Appl Microbiol, 2003;94 Suppl:59S-69S.
    PMID: 12675937
    Since 1994, a number of novel viruses have been described from bats in Australia and Malaysia, particularly from fruit bats belonging to the genus Pteropus (flying foxes), and it is probable that related viruses will be found in other countries across the geographical range of other members of the genus. These viruses include Hendra and Nipah viruses, members of a new genus, Henipaviruses, within the family Paramyxoviridae; Menangle and Tioman viruses, new members of the Rubulavirus genus within the Paramyxoviridae; and Australian bat lyssavirus (ABLV), a member of the Lyssavirus genus in the family Rhabdoviridae. All but Tioman virus are known to be associated with human and/or livestock diseases. The isolation, disease associations and biological properties of the viruses are described, and are used as the basis for developing management strategies for disease prevention or control. These strategies are directed largely at disease minimization through good farm management practices, reducing the potential for exposure to flying foxes, and better disease recognition and diagnosis, and for ABLV specifically, the use of rabies vaccine for pre- and post-exposure prophylaxis. Finally, an intriguing and long-term strategy is that of wildlife immunization through plant-derived vaccination.
  5. Yob JM, Field H, Rashdi AM, Morrissy C, van der Heide B, Rota P, et al.
    Emerg Infect Dis, 2001 May-Jun;7(3):439-41.
    PMID: 11384522
    Nipah virus, family Paramyxoviridae, caused disease in pigs and humans in peninsular Malaysia in 1998-99. Because Nipah virus appears closely related to Hendra virus, wildlife surveillance focused primarily on pteropid bats (suborder Megachiroptera), a natural host of Hendra virus in Australia. We collected 324 bats from 14 species on peninsular Malaysia. Neutralizing antibodies to Nipah virus were demonstrated in five species, suggesting widespread infection in bat populations in peninsular Malaysia.
  6. Sohayati AR, Hassan L, Sharifah SH, Lazarus K, Zaini CM, Epstein JH, et al.
    Epidemiol Infect, 2011 Oct;139(10):1570-9.
    PMID: 21524339 DOI: 10.1017/S0950268811000550
    This study aimed to describe the transmission dynamics, the serological and virus excretion patterns of Nipah virus (NiV) in Pteropus vampyrus bats. Bats in captivity were sampled every 7-21 days over a 1-year period. The data revealed five NiV serological patterns categorized as high and low positives, waning, decreasing and increasing, and negative in these individuals. The findings strongly suggest that NiV circulates in wild bat populations and that antibody could be maintained for long periods. The study also found that pup and juvenile bats from seropositive dams tested seropositive, indicating that maternal antibodies against NiV are transmitted passively, and in this study population may last up to 14 months. NiV was isolated from the urine of one bat, and within a few weeks, two other seronegative bats seroconverted. Based on the temporal cluster of seroconversion, we strongly believe that the NiV isolated was recrudesced and then transmitted horizontally between bats during the study period.
  7. Lee J, Hughes T, Lee MH, Field H, Rovie-Ryan JJ, Sitam FT, et al.
    Ecohealth, 2020 09;17(3):406-418.
    PMID: 33226526 DOI: 10.1007/s10393-020-01503-x
    The legal and illegal trade in wildlife for food, medicine and other products is a globally significant threat to biodiversity that is also responsible for the emergence of pathogens that threaten human and livestock health and our global economy. Trade in wildlife likely played a role in the origin of COVID-19, and viruses closely related to SARS-CoV-2 have been identified in bats and pangolins, both traded widely. To investigate the possible role of pangolins as a source of potential zoonoses, we collected throat and rectal swabs from 334 Sunda pangolins (Manis javanica) confiscated in Peninsular Malaysia and Sabah between August 2009 and March 2019. Total nucleic acid was extracted for viral molecular screening using conventional PCR protocols used to routinely identify known and novel viruses in extensive prior sampling (> 50,000 mammals). No sample yielded a positive PCR result for any of the targeted viral families-Coronaviridae, Filoviridae, Flaviviridae, Orthomyxoviridae and Paramyxoviridae. In the light of recent reports of coronaviruses including a SARS-CoV-2-related virus in Sunda pangolins in China, the lack of any coronavirus detection in our 'upstream' market chain samples suggests that these detections in 'downstream' animals more plausibly reflect exposure to infected humans, wildlife or other animals within the wildlife trade network. While confirmatory serologic studies are needed, it is likely that Sunda pangolins are incidental hosts of coronaviruses. Our findings further support the importance of ending the trade in wildlife globally.
  8. Chua KB, Bellini WJ, Rota PA, Harcourt BH, Tamin A, Lam SK, et al.
    Science, 2000 May 26;288(5470):1432-5.
    PMID: 10827955
    A paramyxovirus virus termed Nipah virus has been identified as the etiologic agent of an outbreak of severe encephalitis in people with close contact exposure to pigs in Malaysia and Singapore. The outbreak was first noted in late September 1998 and by mid-June 1999, more than 265 encephalitis cases, including 105 deaths, had been reported in Malaysia, and 11 cases of encephalitis or respiratory illness with one death had been reported in Singapore. Electron microscopic, serologic, and genetic studies indicate that this virus belongs to the family Paramyxoviridae and is most closely related to the recently discovered Hendra virus. We suggest that these two viruses are representative of a new genus within the family Paramyxoviridae. Like Hendra virus, Nipah virus is unusual among the paramyxoviruses in its ability to infect and cause potentially fatal disease in a number of host species, including humans.
  9. Calisher CH, Carroll D, Colwell R, Corley RB, Daszak P, Drosten C, et al.
    Lancet, 2021 Jul 17;398(10296):209-211.
    PMID: 34237296 DOI: 10.1016/S0140-6736(21)01419-7
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links