Woven laminated composite has gained researchers' and industry's interest over time due to its impressive mechanical performance compared to unidirectional composites. Nevertheless, the mechanical properties of the woven laminated composite are hard to predict. There are many micromechanical models based on unidirectional composite but limited to the woven laminated composite. The current research work was conducted to evaluate elastic moduli of hybrid jute-ramie woven reinforced unsaturated polyester composites using micromechanical effectiveness unidirectional models, such as ROM, IROM, Halpin-Tsai, and Hirsch, which are based on stiffness. The hybrid jute-ramie laminated composite was fabricated with different layering sizes, and the stacking sequence was completed via hand lay-up with the compression machine. Tensile modulus values for hybrid composites are between those for single jute and single ramie. Obtained p-values less than 0.05 prove the relationship between layering size and tensile modulus. This study showed that several micromechanical models, such as Halpin-Tsai's predicted value of homogenized mechanical properties, were in good agreement with the experimental result. In the case of the hybrid composite, the micromechanical model deviates from the experimental result. Several modifications are required to improve the current existing model. A correlation function was calculated based on the differences between the elastic modulus values determined experimentally and those derived from each micromechanical model calculation.
This study aims to produce and investigate the potential of biodegradable Polylactic Acid (PLA)-based composites mixed with chitosan and Turmeric Essential Oil (TEO) as an anti-microbial biomaterial. PLA has good barrier properties for moisture, so it is suitable for use as a raw material for making packaging and is included in the GRAS (Generally Recognized As Safe). Chitosan is a non-toxic and antibacterial cationic polysaccharide that needs to be improved in its ability to fight microbes. TEO must be added to increase antibacterial properties due to a large number of hydroxyl (-OH) and carbonyl functional groups. The samples were prepared in three different variations: 2 g of chitosan, 0 mL TEO and 0 mL glycerol (Biofilm 1), 3 g of chitosan, 0.3 mL TEO and 0.5 mL of glycerol (Biofilm 2), and 4 g of chitosan, 0.3 of TEO and 0.5 mL of glycerol (Biofilm 3). The final product was characterized by its functional group through Fourier transform infrared (FTIR); the functional groups contained by the addition of TEO are C-H, C=O, O-H, and N-H with the extraction method, and as indicated by the emergence of a wide band at 3503 cm-1, turmeric essential oil interacts with the polymer matrix by creating intermolecular hydrogen bonds between their terminal hydroxyl group and the carbonyl groups of the ester moieties of both PLA and Chitosan. Thermogravimetric analysis (TGA) of PLA as biofilms, the maximum temperature of a biofilm was observed at 315.74 °C in the variation of 4 g chitosan, 0.3 mL TEO, and 0.5 mL glycerol (Biofilm 3). Morphological conditions analyzed under scanning electron microscopy (SEM) showed that the addition of TEO inside the chitosan interlayer bound chitosan molecules to produce solid particles. Chitosan and TEO showed increased anti-bacterial activity in the anti-microbial test. Furthermore, after 12 days of exposure to open areas, the biofilms generated were able to resist S. aureus and E. coli bacteria.
Recently, the most critical issue related to the use of natural fibre-reinforced polymer composites (NFRPC) is the degradation properties of composites exposed to the environment. NFRPC's moisture absorption behaviour has adverse effects on the composite's mechanical properties and dimensional stability. The purpose of this study is to analyse the mechanical properties of epoxy composites reinforced by jute-ramie hybridisation. This study also analysed the effect of stacking sequence hybridisation of the jute-ramie composite on water absorption behaviour. A five-layer different type of stacking sequence of single and hybrid jute-ramie is produced with the hand lay-up method. The results obtained from this study found that the mechanical properties and water absorption behaviour of a single jute fibre are lower compared to a single ramie fibre. The hybrid of jute-ramie has been able to increase the performance of composite compared to pure jute composites. The mechanical properties of the hybrid jute-ramie composite show a reduction effect after exposure to an aqueous environment due to the breakdown of fibre matrix interfacial bonding. However, after 28 days of immersion, all types of the stacking sequence's mechanical properties are still higher than that of pure epoxy resin. In conclusion, the appropriate sequence of stacking and selecting the material used are two factors that predominantly affect the mechanical properties and water absorption behaviour. The hybrid composites with the desired and preferable properties can be manufactured using a hand-lay-up technique and used in the various industrial applications.
Recently, there has been an increase in the number of studies conducted on the process of developing hydroxyapatite (HA) to use in biocomposites. HA can be derived from natural sources such as bovine bone. The HA usage obtained from green mussel shells in biocomposites in this study will be explored. The research goal is to investigate the composition effect of biomaterials derived from polycaprolactone (PCL), polylactic acid (PLA), as well as HA obtained from green mussel shells with a chemical blending method on mechanical properties and degradation rate. First, 80 mL of chloroform solution was utilized to immerse 16 g of the PLA/PCL mixture with the ratios of 85:15 and 60:40 for 30 min. A magnetic stirrer was used to mix the solution for an additional 30 min at a temperature and speed of 50 °C and 300 rpm. Next, the hydroxyapatite (HA) was added in percentages of 5%, 10%, and 15%, as well as 20% of the PLA/PCL mixture's total weight. It was then stirred for 1 h at 100 rpm at 65 °C to produce a homogeneous mixture of HA and polymer. The biocomposite mixture was then added into a glass mold as per ASTM D790. Following this, biocomposite specimens were tested for their density, biodegradability, and three points of bending in determining the effect of HA and polymer composition on the degradation rate and mechanical properties. According to the findings of this study, increasing the HA and PLA composition yields a rise in the mechanical properties of the biocomposites. However, the biocomposite degradation rate is increasing.