Displaying all 2 publications

Abstract:
Sort:
  1. Flora B, Kumar R, Tiwari P, Kumar A, Ruokolainen J, Narasimhan AK, et al.
    J Mech Behav Biomed Mater, 2023 Jun;142:105845.
    PMID: 37060714 DOI: 10.1016/j.jmbbm.2023.105845
    A successful attempt has been made to improve the mechanical properties of Hydroxyapatite (HAp) and reduced graphene oxide (rGO) composite nanoparticles (NPs). Various proportions of HAp and rGO were synthesized to improve the mechanical properties. HAp NPs were prepared using the wet precipitation method and further calcined to form crystalline particles. The physicochemical characterization of the HAp NPs revealed that the crystalline size and percentage of crystallinity were calculated to be 42.49 ± 1.2 nm and 44% post calcination. Furthermore, the rGO-HA composites were prepared using ball milling and obtained in the shape of pellets with different ratios of rGO (10, 20, 30, 40, 50% wt.). The mechanical properties have been evaluated through a Universal testing machine. Compared to calcined HAp (cHAp), the strength of variants significantly enhanced with the increased concentration of rGO. The compressive strength of HA-rGO with the ratio of the concentration of 60:40% by weight is a maximum of about 10.39 ± 0.43 MPa. However, the porosity has also been bolstered by increasing the concentration of rGO, which has been evaluated through the liquid displacement method. The mean surface roughness of the composites has also been evaluated from the images through Image J (an image analysis program).
  2. Faiyaz M, Ganayee MA, Akhtar S, Krishnan S, Flora B, Dogra D, et al.
    Front Biosci (Landmark Ed), 2021 10 30;26(10):851-865.
    PMID: 34719210 DOI: 10.52586/4992
    Alzheimer's, a progressive neurodegenerative disease affects brain and neurons through enormous reduction in nerve cell regenerative capacity. Dementia and impairment of cognitive functions are more prevalent in Alzheimer's disease (AD) patients in both industrialized and non-industrialized countries. Various factors play significant role in molecular cascades that leads to neuronal inflammation, dementia and thereby AD progression. Current medications are symptomatic that alleviates pain while lack in absolute cure, urging researchers to explore targets and therapeutics. Interestingly, nanomedicines developed due to the onset of nanotechnology, are being extensively investigated for the treatment of AD. This review presents the advancement in nanotherapeutic strategies, involving the emergence of nanomaterials that offers advantage to pass through the blood-brain barrier and acts as a therapeutic modality against AD.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links