METHODS: After the extraction of the crude oil of the plant, they were tested against a Gentamycin (GM)-treated group of Swiss Albino mice for their nephroprotective action. Animals were divided into six (6) equal groups with five (5) animals in each group. These groups were: control group (0.5 mL normal saline via intraperitoneal -i.p), gentamycin group (gentamycin 100 mg/kg i.p), Silymarin + gentamycin group (Silymarin 50 mg/kg and gentamycin 100 mg/kg i.p), plant extract (AHcr1) and gentamycin group (AHcr1 250 mg/kg and gentamycin 100 mg/kg i.p), AHcr2 + gentamycin group (AHcr2; 500 mg/kg and gentamycin 100 mg/kg i.p) and the hexane oil fraction (AHO) + gentamycin (AHO 1 mL/kg and GM 100 mg/kg i.p). After completion of doses, animals were sacrificed for the collection of blood to further investigate biochemical changes and histopathological changes in kidney tissues.
RESULTS: Serum creatinine, urea, and blood urea nitrogen significantly increased (p < 0.001) in the gentamycin-treated group as compared to the control group. The elevated level of serum creatinine, urea, and blood urea nitrogen was decreased significantly (p < 0.001) in groups treated with AHcr and AHO compared to the gentamycin group. Similarly, the histopathological study of kidney tissues from the gentamycin group showed tubular necrosis, vacuolation, and fibrosis.
CONCLUSIONS: The effect of crude extract and hexane soluble fraction of AH caused a significant reversal of gentamycin-induced nephrotoxicity.
AIM: The aim of this review was to find out the efficacy of L-carnosine in patients with age-related diseases.
METHODS: Clinical studies evaluated the effect of L-carnosine on cancer, cardiovascular disease, diabetes, and neurodegenerative disorders were searched in electronic bibliographic databases. The protocol has been registered with PROSPERO (CRD42022314033). The revised Cochrane risk of bias tool for randomized trials was used to assess all of the reports for risk of bias. RevMan 5.4 was used to conduct the meta-analysis.
RESULTS: Following the screening process, 14 papers were selected for systematic review, with 9 of them being qualified for meta-analysis. Many of the included studies showed that L-carnosine has potential therapeutic activity in age related diseases. Results from the meta-analysis showed that in diabetes mellitus, HbA1c [mean difference (MD) 95% CI = -1.25 (-2.49, -0.022); p = 0.05; p = 0.001; I2 = 85%] and fasting blood sugar (FBS) [MD 95% CI = -12.44 (-22.44, -2.44); p = 0.01; p = 0.40; I2 = 0%] and in neurodegenerative disorder, Wechsler Memory Scale Logical Memory 2 (WMS-LM2) [MD 95% CI = 1.34 (0.83, 1.85); p < 0.00001; p = 0.43; I2 = 0%], showed statistically significant difference, favoring the L-carnosine group over the control group. While in neurodegenerative disorder, Alzheimer 's Disease Assessment Scale (ADAS) [MD 95% CI = 0.98 (-1.55, -0.42); p = 0.0007; p = 0.86; I2 = 0%] and Back Depression Inventory (BDI) [MD 95% CI = -1.12 (-1.87, -0.37); p = 0.003; p = 0.73; I2 = 0%] showed statistically significant difference, favoring the control group over L-carnosine group.
CONCLUSIONS: Clinical studies were conducted to manage chemotherapy induced toxicities and there are no clinical studies available for its anti-cancer use, and the current evidence does not support its use in the treatment of cardiovascular disease.
METHODS: In vitro antioxidant activity was investigated using 2,2'-diphenyl-1-picrylhydrazyl (DPPH), fluorescence recovery after photobleaching (FRAP), and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) methods. The antidiabetic and dermatoprotective effects were studied using enzyme inhibitory activities.
RESULTS: Antioxidant tests showed that PLEO has the best activity (ranging from 29.64 ± 3.04 to 73.80 ± 3.96 µg/mL) compared to its main selected molecules (ranging from 74 ± 3.72 to 107.23 ± 5.03 µg/mL). The α-glucosidase and α-amylase assays demonstrated that the elements tested have a promising antidiabetic potential with IC50values ranging from 78.03 ± 2.31 to 116.03 ± 7.42 µg/mL and 74.39 ± 3.08 to 112.35 ± 4.92 µg/mL for the α-glucosidase and α-amylase assays, respectively, compared to the standard drug. For the tyrosinase test, we found that the EOs (IC50 = 57.72 ± 2.86 µg/mL) followed by limonene (IC50 = 74.24 ± 2.06 µg/mL) and α-pinene (IC50 = 97.45 ± 5.22 µg/mL) all exhibited greater inhibitory effects than quercetin (IC50 = 246.90 ± 2.54 µg/mL).
CONCLUSIONS: Our results suggest that the biological activities of PLEO, as well as its main compounds, make them promising candidates for the development of new strategies aimed at improving dermatoprotection and treating diseases associated with diabetes mellitus and oxidative stress.
METHODS: A total of 50 g/kg/day of 1% HCD was fed to three to four months old male rabbits weighing 1.8 to 2.0 kg for four and eight weeks to induce early and established atherosclerosis respectively. The body weight and lipid profile were measured at baseline and post-HCD intervention. Following euthanasia, the aorta was excised and prepared for histology and immunohistochemical analysis to confirm the stages of atherosclerosis.
RESULTS: The mean body weight of the rabbits in early and established atherosclerosis groups increased significantly up to 17.5% (p = 0.026) and 19.75% (p = 0.019) respectively compared to baseline. The total cholesterol level dramatically elevated up to 13-fold (p = 0.005) and 38-fold (p = 0.013) compared to baseline, after four and eight weeks of 1% HCD feeding respectively. The low-density lipoprotein level significantly increased up to 42-fold (p = 0.006) and 128-fold (p = 0.011) compared to baseline, after four and eight weeks of 1% HCD feeding respectively. Rabbits fed with four and eight weeks 1% HCD significantly developed 5.79% (p = 0.008) and 21.52% (p = 0.008) aortic lesion areas compared to the control group. Histological evaluation in the aorta showed accumulation of foam cells in early atherosclerosis group and formation of fibrous plaque and lipid core in the established atherosclerosis group. Rabbits fed with eight weeks HCD showed higher tissue expressions of ICAM-1, VCAM-1, e-selectin, IL-6, IL-8, NF-κBp65, and MMP-12 compared to four weeks of HCD intervention.
CONCLUSIONS: A total of 50 g/kg/day of 1% HCD for four and eight weeks is sufficient to induce early and established atherosclerosis in NZWR respectively. The consistent results through this method could facilitate researchers in inducing early and established atherosclerosis in NZWR.
METHODS: Male albino rats were exposed to the equivalent of HCQ therapeutic doses given to human patients being affected by malaria, lupus erythematosus, and COVID-19. The animal blood samples were subjected to hematological analysis, biochemical analysis, liver function tests, kidney function tests, and cardiac biomarkers. Liver, kidney, heart, spleen, and testis biopsies were subjected to histological examination.
RESULTS: HCQ significantly lowered the values of erythrocytes, hemoglobin, hematocrit, platelets, leucocytes, and lymphocytes but significantly increased the values of aspartate aminotransferase (AST), alanine aminotransferase (ALT), amylase, alkaline phosphatase, lactate dehydrogenase, cholesterol, and chlorine ions. The renal tissues of HCQ-treated animals demonstrated glomerular fragmentation, partial atrophy degeneration, renal tubules hydropic degeneration, hyaline cast formation, and interstitial edema formation. Additionally, the heart exhibited myofiber necrosis, myolysis, wavy appearance, disorganization, and disarray. The testicular tissues also demonstrated spermatocyte degeneration, spermatogenic cell sloughing, testicular interstitial edema, and occasional spermatogenic arrest. Additionally, the spleen showed a decrease in the number and size of the white pulp follicles, a decrease in the number of apoptotic activity, and a decline in the number of T-rich cells. However, the red pulp demonstrated a diffuse decline in B rich-lymphocytes and macrophages. The liver was also the least affected but showed Kupffer cell hyperplasia and occasional hepatocyte dysplasia.
CONCLUSIONS: The results indicate that chronic exposure to HCQ could alter the structures and functions of the vital organs.
METHODS: Cytokines were measured using a commercial Bio-plex Pro Human Cytokine Grp I Panel 17-plex kit (BioRad, Hercules, CA, USA). Inflammation was assessed by measuring an array of plasma cytokines, and phenotypic alterations in CD4+ T cells including circulating Tfh cells, CD8+ T cells, and TCR iVα7.2+ MAIT cells in chronic HBV, HCV, and HIV-infected patients and healthy controls. The cells were characterized based on markers pertaining to immune activation (CD69, ICOS, and CD27) proliferation (Ki67), cytokine production (TNF-α, IFN-γ) and exhaustion (PD-1). The cytokine levels and T cell phenotypes together with cell markers were correlated with surrogate markers of disease progression.
RESULTS: The activation marker CD69 was significantly increased in CD4+hi T cells, while CD8+ MAIT cells producing IFN-γ were significantly increased in chronic HBV, HCV and HIV infections. Six cell phenotypes, viz., TNF-α+CD4+lo T cells, CD69+CD8+ T cells, CD69+CD4+ MAIT cells, PD-1+CD4+hi T cells, PD-1+CD8+ T cells, and Ki67+CD4+ MAIT cells, were independently associated with decelerating the plasma viral load (PVL). TNF-α levels showed a positive correlation with increase in cytokine levels and decrease in PVL.
CONCLUSION: Chronic viral infection negatively impacts the quality of peripheral MAIT cells and Tfh cells via differential expression of both activating and inhibitory receptors.