Displaying all 2 publications

Abstract:
Sort:
  1. Forcina G, Camacho-Sanchez M, Tuh FYY, Moreno S, Leonard JA
    Heliyon, 2021 Jan;7(1):e05583.
    PMID: 33437884 DOI: 10.1016/j.heliyon.2020.e05583
    Background and aims: Wildlife conservation has focused primarily on species for the last decades. Recently, popular perception and laws have begun to recognize the central importance of genetic diversity in the conservation of biodiversity. How to incorporate genetic diversity in ongoing monitoring and management of wildlife is still an open question.

    Methods: We tested a panel of multiplexed, high-throughput sequenced introns in the small mammal communities of two UNESCO World Heritage Sites on different continents to assess their viability for large-scale monitoring of genetic variability in a spectrum of diverse species. To enhance applicability across other systems, the bioinformatic pipeline for primer design was outlined.

    Results: The number of loci amplified and amplification evenness decreased as phylogenetic distance increased from the reference taxa, yet several loci were still variable across multiple mammal orders.

    Conclusions: Genetic variability found is informative for population genetic analyses and for addressing phylogeographic and phylogenetic questions, illustrated by small mammal examples here.

  2. Wu MY, Low GW, Forcina G, van Grouw H, Lee BPY, Oh RRY, et al.
    Evol Appl, 2020 Oct;13(9):2300-2315.
    PMID: 33005225 DOI: 10.1111/eva.13023
    The red junglefowl Gallus gallus is the ancestor of the domestic chicken and arguably the most important bird species on Earth. Continual gene flow between domestic and wild populations has compromised its gene pool, especially since the last century when human encroachment and habitat loss would have led to increased contact opportunities. We present the first combined genomic and morphological admixture assessment of a native population of red junglefowl, sampled from recolonized parts of its former range in Singapore, partly using whole genomes resequenced from dozens of individuals. Crucially, this population was genomically anchored to museum samples from adjacent Peninsular Malaysia collected ~110-150 years ago to infer the magnitude of modern domestic introgression across individuals. We detected a strong feral-wild genomic continuum with varying levels of domestic introgression in different subpopulations across Singapore. Using a trait scoring scheme, we determined morphological thresholds that can be used by conservation managers to successfully identify individuals with low levels of domestic introgression, and selected traits that were particularly useful for predicting domesticity in genomic profiles. Our study underscores the utility of combined genomic and morphological approaches in population management and suggests a way forward to safeguard the allelic integrity of wild red junglefowl in perpetuity.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links